
Pot’Vin
Miller
Smith

Shelve in
Databases/Oracle

User level:
Intermediate–Advanced

SOURCE CODE ONLINE

Oracle Enterprise Manager 12c Command-Line Interface shows how to use Enterprise
Manager’s powerful scripting language to automate your database administration
work and save time by scripting routine tasks, and then executing those scripts across
collections of databases and instances in your environment. This book is chock full of
ready-made scripting examples contributed by the authors and leading members of
the community. For example, you’ll find scripts and examples of commands to:

• Remove an Enterprise Manager agent and its related targets
• Quickly create fully-configured administrator accounts
• Invoke batch files to execute against multiple targets
• Batch create groups of user logins with a single command
• and more!

The Enterprise Manager Command Line Interface (EM CLI) is the administrator’s
key to unlocking the power of Enterprise Manager 12c (EM12c) with scalability,
repeatability, and confidence. In previous versions, most administrators ventured
into the command-line interface only with the assistance of Oracle Support. But now
there are many features in EM12c that are accessible only from the command-line.
This is far from a disadvantage! Enterprise Manager is now a powerful tool for
automation in the hands of a skilled database administrator.

RELATED

9 781484 202395

55499
ISBN 978-1-4842-0239-5

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ��xiii

About the Technical Reviewers �� xv

Acknowledgments �� xvii

Chapter 1: Architecture ■ ���1

Chapter 2: Installation and Security Framework and EM12c Release 4 ■ ���������������������������7

Chapter 3: Terminology and Basics ■ ���27

Chapter 4: Working at the Command Line ■ ���45

Chapter 5: Automation Through Shell Scripts ■ ���57

Chapter 6: Advanced Scripting ■ ��79

Chapter 7: Using the Software Library and Oracle Extensibility Exchange ■ �������������������105

Chapter 8: Sample EM CLI Scripts ■ ���125

Index ���163

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Architecture

Oracle Enterprise Manager 12c provides a scalable and reliable central repository, a console, and services for
managing your all of your Oracle products. Users typically interact with OEM through the OEM console, which has a
rich intuitive graphical interface.

The Enterprise Manager Command-Line Interface (EM CLI) provides access to OEM system functionality outside
of the console. Interactive EM CLI tasks can replace lengthy click-streams in defining EM administrator accounts
and roles, as one example of its usefulness. EM CLI interactive commands can be used in shell scripts or can be CLI
invoked through CLI’s own scripting mode in Jython.

This book explores different ways you can apply these techniques to simplify and automate tasks in your Oracle
environment.

Enterprise Manager Framework
The Oracle Enterprise Manager application runs as a JEE application in a WebLogic Server J2EE domain on a
WebLogic server. This combination is known as the Oracle Management Server, or OMS.

Java processes running on the OMS gather and process XML file uploads that come from EM agents on your
remote hosts. That information is posted to a repository database, where it is stored in the SYSMAN schema.

When you view a page on your OEM console, the data is assembled from the repository database for
presentation. In the same way, commands that you issue from the console are processed through the OMS to update
repository information (metric collection or notifications, for instance) or manipulate managed targets either through
a call to the EM agent or through an authenticated connection to a remote database or host.

Each command issued by the console executes a Java program. The console solicits and assembles data as well
as the input commands required for those routines to execute. Much of the manipulative and query code base can be
accessed through EM CLI.

The EM CLI program is itself a lightweight Java program that performs the same activities as the console pages
but runs an immediate execution of OMS modules using values passed as command-line inputs; it is often employed
in shell scripts or Jython programs.

EM CLI Verbs
Interface commands are referred to as verbs. Each verb performs a single task and either succeeds with reasonable
feedback or comes back with a quick and obvious failure message.

Many verbs require input values on the command line. As with a PL/SQL package, your input must be passed to
the OMS using very specific syntax. The values are always preceded by a filter keyword, and most input requires your
strings to be wrapped in double-quotes.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ arChiteCture

2

Note ■ the authors’ experiences using quotation marks have been mixed. they are recommended, but often aren’t
required. We’ll use them for clarity in our examples. You may find that you don’t always need them, or that you prefer
not to use them.

Use the get_targets verb to display or capture a list of the targets in your environment, as follows:

emcli get_targets

To find only Oracle database targets you’d filter your request with the targets keyword:

emcli get_targets -targets="oracle_database"

Numerous examples throughout this book demonstrate how verbs and input values are applied. A catalog of EM
CLI verbs and their syntax is available in Oracle Support document E17786-x. Be aware that some verbs are tied to
management packs that require licensing fees. You can also find online help at the command-line that lists all of the
verbs available and their intended use. For example:

emcli help
Summary of commands:

 argfile -- Execute emcli verbs from a file
 help -- Get help for emcli verbs (Usage: emcli help [verb_name])
 login -- Login to the EM Management Server (OMS)
 logout -- Logout from the EM Management Server
 setup -- Setup emcli to work with an EM Management Server
 status -- List emcli configuration details
 sync -- Synchronize with the EM Management Server
 version -- List emcli verb versions or the emcli client version

 Add Host Verbs
 continue_add_host -- Continue a failed Add Host session
 get_add_host_status -- Displays the latest status of an Add Host session.
 list_add_host_platforms -- Lists the platforms on which the Add Host operation

can be performed.
 list_add_host_sessions -- Lists all the Add Host sessions.
 retry_add_host -- Retry a failed Add Host session
 submit_add_host -- Submits an Add Host session.
...

The help verb can be filtered with specific verbs to display detailed usage instructions:

emcli help get_targets
 emcli get_targets
 [-targets="[name1:]type1;[name2:]type2;..."]
 [-alerts]
 [-noheader]
 [-script | -format=
 [name:<pretty|script|csv>];
 [column_separator:"column_sep_string"];
 [row_separator:"row_sep_string"];
]

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ arChiteCture

3

 [-config_search="Configuration Search UI Name"]
 [-unmanaged]

 Description:
 Obtain status and alert information for targets.

 Options:
 -targets=name:type
 Name or type can be either a full value or a pattern match
 using "%". Also, name is optional, so the type may be
 specified alone.
 -config_search="Configuration Search UI Name"
 Search UI Name should be the display name of the configuration search.
 -alerts
 Shows the count of critical and warning alerts for each target.
 -noheader
 Display tabular output without column headers.
 -script
 This option is equivalent to -format="name:script".
 -format
 Format specification (default is -format="name:pretty").
 -format="name:pretty" prints the output table
 in a readable format but is not intended to be parsed by scripts.
 -format="name:script" sets the default column separator
 to a tab and the default row separator to a newline.
 The column and row separator strings may be specified
 to change these defaults.
 -format="name:csv" sets the column separator to a comma
 and the row separator to a newline.
 -unmanaged
 Get unmanaged targets (no status or alert information)

 Output columns:
 Status ID Status Target Type Target Name Critical Warning

 Examples:
 emcli get_targets
 Shows all targets. Critical and Warning columns are not shown.

 emcli get_targets
 -alerts
 Shows all targets. Critical and Warning columns are shown.

 emcli get_targets
 -targets="oracle_database"
 Shows all "oracle_database" targets.

 emcli get_targets
 -targets="%oracle%"
 Shows all targets whose type contains the string "oracle".

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ arChiteCture

4

 emcli get_targets
 -targets="database%:%oracle%"
 Shows all targets whose name starts with "database" and type
 contains "oracle".

 emcli get_targets
 -targets="database3:oracle_database"
 -alerts
 Shows status and alert information on the Oracle database named
 "database3".

 emcli get_targets
 -config_search="Search File Systems on Hosts"
 -targets="oracle%:host"
 -alerts
 Shows status and alert information of the resulting targets from
 configuration search named "Search File Systems on Hosts" and targets
 whose name starts with "oracle" and of type "host".

 emcli get_targets
 -targets="host"
 -unmanaged
 Shows name and type information for unmanaged host targets.

EM CLI Client Software
The basic OEM installation on a management server preconfigures an EM CLI client as part of OMS Oracle Home.
In Chapter 2 we’ll show you how to upgrade that client to the EM CLI Advanced Kit.

Part of EM CLI’s strength comes from its flexibility. In addition to the client installation on the OMS server,
you can install the EM CLI client on a non-OMS host or even on your desktop.

Installing the EM CLI client consists of downloading and extracting an installation jar file in order to install the
binaries, and then configuring the client with connection information for your OMS server. The jar file and installation
for its use are available through the OEM console under Setup > Command-Line Interface. Follow the instructions on
that web page to install the EM CLI to your workstation.

EM CLI and EMCTL
Several EM CLI functions can be performed through the Agent Control utility EMCTL. Your choice of technique
depends on a combination of factors.

EM CLI client must be manually installed and maintained on the remote host when called •	
by shell scripts on the remote host. The console displays a listing of remote CLI client
installations, but you still have to manually update the client software.

EM CLI configuration on a remote host requires connection information for interaction with •	
the OMS server. When this information changes, you must visit each EM CLI installation.

EMCTL commands are specific to the targets known to a specific agent, so the commands •	
passed on the command line are typically much simpler.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ arChiteCture

5

You must be logged in on the remote host to execute an EMCTL command. EM CLI allows you •	
to perform many EMCTL-equivalent commands remotely in order to avoid a trip to the server.
This can be particularly helpful when managing a number of servers in one session.

We recommend using EMCTL when you’re just getting started or if your installation is small. Commands in
EMCTL tend to be simpler, and the setup ahead of time is also simpler. The “investment” in time to get set up using
EM CLI however, becomes worthwhile at scale. Those with large infrastructures to support will find themselves
tending toward using EM CLI.

Agent Start and Stop
EM agents can be started and stopped from inside the OEM console, through EM CLI, and of course by EMCTL. Since
EMCTL commands are performed for a single agent, the commands tend to be quite simple:

emctl start agent

emctl stop agent

Similar functionality can be performed from the management server, your desktop, or any host with the EM CLI
client installed. Portability comes with complexity since you have to identify not only the agent to be controlled, but
also the credentials to be used.

You can specify a host user, a named credential, or a credential set. When you pass the username you also have to
provide a password. In a purely interactive mode you can be prompted for the password, but using this technique in a
shell script may expose the password to other operating system users. Using OEM named credentials avoids this issue:

emcli start_agent –agent_name="dbservera:3872" –host_username="oracle" –host_pwd="Souper_53cre3t"
emcli start_agent –agent_name="dbservera:3872" –credential_name="oraprod"
emcli start_agent –agent_name="dbservera:3872" –credential_setname="HostCreds"

The stop commands require the same conditional values; for instance:
emcli stop_agent –agent_name="dbservera:3872" –host_username="oracle"

We’ll explore some of these options in greater depth in Chapter 4.

Centralization
Perhaps you’ve decided to shut down some of your EM agents during a physical server move or perhaps during
operating system patching. You can quickly build a list of the affected agents with EM CLI get_targets for oracle_emd
types and turn that list into two CLI argfiles—one to stop the agents and another to start them.

Note ■ argfiles are used to process batches of CLi commands. they are discussed in more detail in Chapter 5.

Following is an example putting argfiles to use:

touch argfile_stop.lst
touch argfile_start.lst
emcli get_targets | grep oracle_emd > workfile.lst
for thisAGENT in `cat workfile.lst`; do
 echo "start_agent –agent_name=${thisAGENT} –credential_name=oraprod" > argfile_start.lst
 echo "stop_agent –agent_name=${thisAGENT} –credential_name=oraprod" > argfile_stop.lst
done

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ arChiteCture

6

emcli login –user="SYSMAN"
emcli sync
emcli argfile ./argfile_stop.lst
logout

Access
Larger Oracle environments may have a separation of duties between the OEM administrator and regular DBA staff,
or perhaps your security rules make it difficult to visit servers for routine maintenance. In those cases, running the CLI
commands or managing up/down through the console makes sense.

Safety Net
You are prompted for a confirmation any time you ask to perform a dangerous task in the OEM console. EM CLI
doesn’t have the same functionality. When you give a command your task is executed exactly as you requested, so be
mindful when deleting or modifying targets. Despite this, many people prefer the command line for its direct actions
without excess feedback. Just be careful.

www.allitebooks.com

http://www.allitebooks.org

7

Chapter 2

Installation and Security Framework
and EM12c Release 4

Now that you understand the Enterprise Manager architecture, you may want to understand more-advanced
installation methods for the Oracle Management Service (OMS) host or for a remote installation. You’ll also want to
be up to date on the latest verbs that come into play with 12.1.0.4, also known as EM12c Release 4, which is all covered
in this chapter.

EM CLI and WebLogic Installation
Enterprise Manager runs as a domain on a WebLogic server (WLS). The cloud life-cycle solution couldn’t exist without
the middle-tier architecture provided by WebLogic. WLS handles the business logic along with communicating with
web services and other remote processing to ensure front-end transactions are completed from beginning to end.

There was a time when the OMS required a separate installation of the WLS. Although it’s currently an automated
step in the installation of EM12c, comprehending how to perform this manually is valuable to the administrator,
especially going forward when administering and managing the environment.

The WebLogic server must be made available to and synchronized with the Enterprise Manager Command-Line
Interface (EM CLI) in order to offer the latest plug-ins, management packs, and full access to the Enterprise Manager
Cloud environment.

Requirements
In order to understand the requirements before the EM CLI installation on your OMS proceeds, ensure that the
WebLogic Domain Provisioning Profile is created in such a way that the software library has the Middleware Home
that belongs to the domain archived and stored as part of the WebLogic domain.

Creating the WebLogic Domain Provisioning Profile
There are three components that make up the provisioning profile:

a middleware home•	

the binaries used by the WebLogic server components•	

the domain configuration for the provisioning profile•	

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

8

If you simply have an administrator or super administrator log in to the EM12c environment, it will not be
sufficient to complete the WLS domain provisioning profile. To complete this task, you must have the following:

Host credentials for the WLS and any other host involved in the provisioning setup. These •	
credentials were required during the initial OEM installation.

All targets must have Java Required Files (JRF) enabled, which is discovered and monitored by •	
Enterprise ManagerEnsure.

Log in to the Enterprise Manager Cloud Console as a super user and click on Enterprise, Provisioning and
Patching, and then Software Library, as shown in Figure 2-1.

Figure 2-1. Accessing the software library within the EM12c console

Figure 2-2. Creating a new folder within the software library for provisioning, patching, or installations

Once you enter the software library, you will need to create a folder in which to store the profile (Figure 2-2).

The Software Library already has a pre-determined set of sub-directories available. For our example, we will
create a new directory named Profile_Home, give a defined description, and save it to a newly defined Networks
sub-directory (Figure 2-3).

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

9

Once satisfied with the entries, click OK. You will be shown that the directory was created successfully as well as
the location of the new sub-directory off the software library directory tree (Figure 2-4).

Figure 2-3. Creation and details for the Profile_Home folder to be used for the WebLogic EM CLI installation

Figure 2-4. Confirmation of successful folder creation in the software library within the Networks directory

You will be returned to the software library main menu. Once more, click Actions, Create Entity, and then
Component (Figure 2-5).

Figure 2-5. The Actions menu, displaying expanded options to access the component-creation action in the software
library

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

10

Once the profile subtype has been chosen, click on the Continue button.

Note ■ don’t be concerned if it takes a bit of time before the next step in the process returns to the screen. there is a
delay at the Continue step.

Once the wizard arrives at the details page for the component, enter in the following (Figure 2-7):

Name•	

Description•	

Other attributes (these settings can also be set on the home page for your WebLogic server) •	

Figure 2-6. Creating an entity for a WebLogic Domain Provisioning Profile within the EM12c console

Figure 2-7. Filling out description and values for a new WebLogic Domain Provisioning Profile

Don’t add any file attachments or any other information, but simply click Next. You will then be asked about
selecting a WebLogic service. Before choosing one, ensure that the box is checked for “Include the binaries for the
Middleware Home in the profile to be created.” This is essential for the profile to be created correctly.

The component wizard will take you through the steps to create the actual profile. A dropdown menu will show
on the screen; choose the final option, WebLogic Domain Provisioning Profile (Figure 2-6).

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

11

You can simplify the search, but most environments have only a few WebLogic servers. Choose the one that you
wish to use from the list and click Select.

The Configure page will require you to review the data you’ve chosen so far (Figure 2-9). Correctly set a working
directory that exists and has at least 200 MB of free space for work files. If you set the working directory incorrectly or
if there is not enough space, the job will fail, which will leave profile components to be cleaned up and recreated from
the beginning of this step. This also is in no way your final storage location for your profile, and all working files will be
cleaned up after processing.

Figure 2-8. Selecting a target to add to the WebLogic domain in the EM12c console

Click on the magnifying glass next to “No WebLogic Domain Selected.” A pop-up will show available WebLogic
domains (Figure 2-8).

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

12

Ensure the credentials are set properly, creating new ones if necessary, but hopefully by this time you will have
created preferred credentials, as is best practice.

Once you have verified that the information on the Configure page of the wizard is correct, click Next.
If you are satisfied with the information on the Review page (no upload of any files is required, so don’t be

alarmed when it shows that there aren’t any files at this time in the bottom section), click Save and Upload.
A job will now be submitted for the task, and you will receive confirmation (Figure 2-10).

Figure 2-9. Configuring the provisioning profile for the WebLogic domain to be used with the software library setup

Figure 2-10. Confirmation of job submittal for the WebLogic Domain Provisioning Profile creation

As the job is managed by the Enterprise Manager Job Service, you can now click on Enterprise, Jobs, and Job
Activity to monitor the job like any other job submitted through this feature (Figure 2-11).

Figure 2-11. Monitoring the provisioning profile job within the Job Activity view in the EM12c console

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

13

You may need to refresh the console view as the job is running and then again after the job has completed. You
may need to change the Activity view status to All or Successful in order to view the completed job. The job takes a
significant amount of time, but you can see the job directory on the server within the working directory in which you
choose to place the working files (for this example, I chose to create a temp folder in /u01/home/oracle/, as shown in
Figure 2-12).

Figure 2-12. Viewing the job status from the command line via the working files that were created as part of the job

Once the job has completed you can verify that it has done so successfully in one of three ways:

Check the Job Activity Details to ensure all steps were completed successfully.•	

Click on Enterprise, Patching and Provisioning, then on Middleware and check that the profile •	
you just created is listed.

Click on Enterprise, Patching and Provisioning, then on Software Library. If you expand the •	
Networks folder into its sub-directories, you will be able to see each of the three components
that made up the profile, and they all should show a successful status.

Filtering Out Fusion Middleware
With the provisioning profile out of the way, you can now reduce the number of procedures in your onscreen list
by filtering out Fusion Middleware. This is done by creating a new properties file template for a Fusion Middleware
Provisioning Procedure (FMWPROV) procedure by the corresponding Global Universal Identifier (GUID). The
FMWPROV procedure is submitted to completion using the updated properties file.

To capture the GUID for the deployment procedure, the emcli command is as follows:

> emcli get_procedures | grep FMWPROV

Your result will be the following:

<proc_guid>, <procedure_type>, <display_name>, <version>, <parent_name>

Output appears like:

> emcli get_procedures | grep FMWPROV
F5143FC2A0D94E37E043BB76F00ADE34 FMW Provisioning FMWPROV_DP Provision Middleware 5.0 ORACLE

Using the GUID above, prepare the properties file template:

> emcli describe_procedure_input -procedure=F5143FC2A0D94E37E043BB76F00ADE34 >FMVtmp.properties
> A properties file with the name FMVtmp.properties is created

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

14

Save the updated template file and submit the procedure to complete the provisioning:

> emcli submit_procedure -input_file=data:FMVtmp.properties -procedure=
F5143FC2A0D94E37E043BB76F00ADE34

One of the biggest strengths of provisioning is scalability. EM12c offers the opportunity to increase the cluster’s
capacity with additional server instances. The option to scale a managed server up and out—using EM CLI commands
along with the SCALEUP procedure and the instance GUID—is required in order to create the input properties file for
the procedure. Once the properties file is updated, the SCALEUP procedure can be submitted:

> emcli get_procedures | grep SCALEUP
B95E01B1F145B5EEE050634DC8854DC, FMW Provisioning, SCALEUP DP, Scale up/Scale out Middleware, 2.0,
ORACLE

Once this information is returned, you can use the GUID information to create the properties file. This process
must be submitted at least once for the target GUID to create the properties file or an error will occur:

Figure 2-13. Example of filled-out properties file to be used in fulfilling request for procedure calls with EM CLI

Once the file is created, open the file with vi and update it with those properties required to complete the
necessary data for the FMV provisioning (seen in red in Figure 2-13; will need to be updated with the values for your
environment):

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

15

> emcli get_instance_data –instance= B95E01B1F145B5EEE050634DC8854DC > instancetmp.properties
A properties file with the name instancetmp.properties is created.

Open the properties file in an editor and enter the updated information, then save. Once updates are completed,
you must submit the procedure:

> emcli submit_procedure –input_file: instancetmp.properties
–procedure=B95E01B1F145B5EEE050634DC8854DC

This will complete the process of submitting the procedure to scale up a middleware deployment.

Jython
Python has been around for quite a while and will continue to grow in popularity as a relatively easy and robust
development language. But what is “Jython”?

Jython, by the simplest definition, is the Java implementation of the Python language. Like Python, the syntax is
simple to learn, self-formatted, and does not require compilation (like Perl) before the code can be used.

Beginning with EM12c Release 3, the EM CLI includes an embedded Jython interpreter. The function calls, also
known as verbs, are executed with their corresponding key-value pairs or parameters presented as verb arguments.
The purpose and use of verbs is explained later in this book.

If utilizing interactive mode, the interpreter opens a shell where simpler commands are issued, rather than
shell-scripting mode where the interpreter accepts a scripted list of commands to process as a program, or rather than
when simply exercising EM CLI at the command prompt. The advantage, of course, is that end-users can apply the
power of EM CLI without being concerned about syntax and key-value pairs.

You can connect to any target in the Enterprise Manager environment via stateless communication and a security
layer in the OMS so as to utilize Jython with EM CLI. There is a simple and generic list function within the Enterprise
Manager resources, as well as an ability to run user-defined SQL queries to access published repository views.

To execute a script written in Jython, the command can be as simple as executing it from the command line
interactively, much as you would a SQL script:

> emcli @test_python_scrpt.py

To run in interactive mode, you would need to start the EM CLI program:

> emcli <enter>
emcli>

The Jython-based scripting environment allows interactive processing and a simple scripting mode with a
standardized format using JSON. JSON stands for Java Script Object Notation. JSON format is also fairly simple. It
requires only the representative data for collections of names and value pairs. These pairs are then housed within
arrays, maps, or lists to ensure manageability.

Similar to XML, JSON corresponds to how both developers and environment systems read data, but it doesn’t
have the metadata overhead that is required for XML, referred to as elements and attribute names.

Supported Java Versions
EM CLI requires proper Java version support, which is also a requirement for advanced scripting with Jython,
so knowledge of Java versions is important. The copy of EM CLI installed on your OMS during standard product
installation relies on the JAVA_HOME already in place for OEM.

EM CLI on other locations (such as your desktop) must have the JAVA_HOME set, and it requires Java version 1.6.0.43
or greater.

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

16

If using Jython, Java must be installed and set before installing the EM CLI advanced kit (emcliadvancedkit.jar).
Windows 8 and 8.1 will experience errors unless Java version 1.7.0.17 is present. Compatibility matrices are available
at My Oracle Support.

Tip ■ windows servers will often recommend uninstalling older versions of Java once new ones are in place. to avoid
registry issues, ensure that:

no other oraCle_home is utilizing the Java version in its path, and••

the older version of Java is uninstalled •• before installing the newer version to prevent any impact to the
new installation.

Path and Environment Variables
To execute EM CLI verbs, no matter if they are Python or otherwise, you will need a connection to the OMS. This will
require environment variables to be set (also known as client properties) as part of the EM CLI scripting environment.
You can inspect all possible client properties by utilizing the help option in the EM CLI:

> emcli>help('client_properties')
 EMCLI_OMS_URL
 EMCLI_USERNAME
 EMCLI_AUTOLOGIN
 EMCLI_TRUSTALL
 EMCLI_VERBJAR_DIR
 EMCLI_CERT_LOC
 EMCLI_LOG_LOC
 EMCLI_LOG_LEVEL
 EMCLI_OUTPUT_TYPE(status())

Client or Remote Target Installation
There are various reasons for installing the EM CLI on a remote target. You must decide if there is a significant need to
do so or if a task that needs to be run from the remote target can be accomplished with an emctl command instead.

Here are two reasons for not installing the EM CLI on a remote target or client:

 1. Security: The EM CLI will be configured to access the OMS, and the security risk of doing
so should be justified. Any person using the EM CLI on the remote target or client will still
be required to log in as they would from the OMS installation of the EM CLI, but this does
pose an added security risk versus a solely OMS-installed configuration.

 2. Efficiency: Enterprise Manager Control (EMCTL) command can accomplish several of the
same tasks as EM CLI at the command line, such as issuing a remote blackout of a target
and so forth. In those cases, there is no need to go through a full remote installation and
configuration of EM CLI. EMCTL uses the existing EM agent to perform those tasks, using
its standard connections without the need for additional passwords or authentication
tokens.

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

17

Now we will review the steps to follow when you have a justified reason to proceed with a remote target or client
installation of the EM CLI. Desktop installation of the EM CLI client is also accomplished with this procedure.

Downloading and deploying the EM CLI client to remote hosts requires only a few steps. The actual EM CLI
installation was completed automatically on the OMS host, so only remote client installations are required to be done
manually. There are two kits that come as part of the EM CLI client—the EM CLI standard kit and the EM CLI scripting
kit. If you wish to use the scripting method outside of the OMS host, then both kits are required for the remote
installation. The scripting kit includes the Jython interpreter, so a secondary interpreter is not required for Jython
scripting.

This section will focus solely on the standard kit, while the next section will enhance the installation technique by
focusing on the advanced (both standard and scripting) kit.

Before installing, you must meet the following requirements on any client or remote target:

EM12c Cloud Control Framework•	

Java Version 1.6x or higher•	

Operating System Linux, Sun, HPUX, AIX, or Windows.•	

Once these requirements have been met, you must download the kit(s) from one of two places. The first it
through the EM12c console by clicking on Setup, Command Line Interface, then choosing “Download the EM CLI
Standard Kit to your Workstation.” Choose a location to which to save the download.

You can also download it from the OMS Host using the URL link:

https://<OMS_HOST>:<port>/em/<swlib_directory>/emcli/kit/emclikit.jar

Once you have completed the download of the emclikit.jar file, copy it via SCP/FTP or other transport utility to
the remote server.

Upon completing the transfer of the .jar file, as with any kit installation, ensure your JAVA_HOME is set.
Depending on your operating system, this may require one of the following:

Unix:

> setenv JAVA_HOME /usr/local/packages/j2sdk
> setenv PATH $JAVA_HOME/bin:$PATH
> echo $JAVA_HOME
> echo $PATH

Linux:

> export JAVA_HOME /usr/bin/jdk6/jre
> export PATH $JAVA_HOME/bin:$PATH
> echo $JAVA_HOME $PATH

Windows:

> set JAVA_HOME D:\progra~1\java\jre
> echo %JAVA_HOME%

Note ■ the path will be set in the server’s environment variable.

www.allitebooks.com

https://<OMS_HOST>:<port>/em/<swlib_directory>/emcli/kit/emclikit.jar
http://www.allitebooks.org

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

18

Then check the Java path as follows:
Unix/Linux:

> which java

Windows:

C:\users: where java

Once the JAVA_HOME is verified, the EM CLI standard kit can be quickly installed by executing the following
command, replacing the emcli_install_dir with the associated directory in which you wish to install the EM CLI:

> $JAVA_HOME/bin/java -jar emclikit.jar -install_dir=<em_cli_home_dir>

For Windows, the process is adjusted to take changes for environment variables into consideration:

%JAVA_HOME%\bin\java -jar emclikit.jar -install_dir=<em_cli_home_dir>

Once complete, the following message will be returned:

The EM CLI client is installed in <emcli_client_install_dir>

This will verify that the installation is complete. You will need to review the logs and ensure that there were no
errors in the installation; also check that all functionality is enabled. If you use Single Sign-on (SSO) or other advanced
security, ensure that there are steps taken to include synchronization with the EM CLI.

EM CLI Advanced Kit
As with the standard kit, the EM CLI advanced kit can be downloaded from the EM12c console. Once logged in to the
Enterprise Environment, click on Setup, then on Command Line Interface (Figure 2-14).

Figure 2-14. Accessing the EM CLI from the Enterprise Manager console

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

19

Once you’ve entered the EM CLI installation wizard, you will see the choices shown in Figure 2-15.

Figure 2-15. Installation requirements for the EM CLI installation from the Enterprise Manager console

Figure 2-16. Warning when downloading the .jar file required for a workstation download of the EM CLI installation

The instructions on the right-hand side of the page give clear and defined steps on how to download the kit and
which pre-requisites are required to complete the installation successfully.

EMCLI Installation via the OMS
The last option for installation is performed through the OMS. You will initially download the EM CLI kit to the remote
host or your workstation. Note that the download link is the first bulleted option in the display page, “Download the
EM CLI with scripting options to your workstation.”

Click on this link to start the download process. As this is a Java file, you may receive the following or similar
warning (Figure 2-16):

You can also download the file directly via this URL:

http://<EM_HOST>:<port>/em/<public_sw_lib>/emcli/kit/emcliadvancedkit.jar

Once this is complete, ensure you’ve copied the file to the new host via SCP/FTP or another file transfer utility.
If the advanced kit is to be used on the local OMS host, then proceed with the installation step.

Ensure that you’ve set your JAVA_HOME properly and that it’s part of your environment path, which we covered
in the standard kit installation steps.

https://<EM_HOST>:<port>/em/<public_sw_lib>/emcli/kit/emcliadvancedkit.jar

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

20

Note ■ If this is for a windows host installation, set the JaVa_home in the environment variables and not at the
 session level. oracle installs invariably call secondary sessions that may not carry over the session-level variables, which
can cause a failure in those secondary processes.

Execute the installation step with the following command, replacing emcli_install_dir with the directory
associated with the installation path:

> java –jar emcliadvancedkit.jar client –install_dir=<emcli_install_dir>

As before, the following message will return upon successful installation:

The EM CLI client is installed in <emcli_install_dir>

Post-Installation
Once the installation is complete for any kit, on host or remote host, synchronization with the OMS should be performed.

You first need to configure the EM CLI client or remote host information with the existing OMS before
synchronizing with it.

Change over to the EM CLI home directory and set up a local user with local configuration information. You can
easily collect information on the setup verb by typing in the following command:

> emcli help setup

Setting up a local user requires the following command syntax:
Standard Kit:

> emcli setup –url=http://<local_host_name>:<port>/em –username=em_user

Advanced (Scripting) Kit

> emcli setup –url=http://<local_host_name>:<port>/em –username=em_user -trustall
> emcli login –username=sysman

Once set up, you need to synchronize it with the OMS:

> emcli help sync

Patching and Upgrades
Although patching and upgrades may not first appear to be part of installation, they are a very important aspect of
it. Considering that we stress the importance of applying any and all bundle patches upon installation, the inclusion
of checking for these during the installation process should relay how important this step is in the installation of any
OEM environment.

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

21

Patching with the EM CLI Clients
Patching can be performed by utilizing deployment procedures from the command-line interface as completely as
it can be performed via the Enterprise Manager console. Patching is performed in conjunction with a properties file,
which includes the inputs to ease commands and offers the information the EM CLI requires to complete the patching
process. It’s important to remember that EM CLI is not an agent like the regular EM agent on each host; it is a utility
that installs as client software.

To create a properties file from scratch, you need to know how and when to create one, using one of the
following steps:

from a template from an existing procedure•	

using a properties file in its current state, created via the console•	

re-using a saved properties file from a previous execution•	

Creating a Properties File from a Template
Using an existing procedure GUID, a template can be built with just a few commands and values inserted for the new
procedure that you want to execute.

Then perform the execution of the EM CLI command to pull info about the procedure templates available.
For our example below, we are going to pull patching template examples:

./emcli get_procedures -type=PatchOracleSoftware
CF9D698E8D3843B9E043200B14ACB8B3, PatchOracleSoftware, CLONE_PATCH_SIDB, Clone and Patch Oracle
Database, 12.2, ORACLE
CF9D698E8D4743B9E043200B14ACB8B3, PatchOracleSoftware, PATCH_ALL_NODES_CLUSTER_ASM, Patch Oracle
Cluster ASM - All Nodes, 12.2, ORACLE

The first information returned is the procedure GUID that we require to then create our properties file from
which to work:

./emcli describe_procedure_input -procedure=CF9D698E8D3843B9E043200B14ACB8B3
> Patch_template.properties
Verifying parameters ...

And your template file is now created:

-rw-r--r-- 1 oracle dba 65950 Jan 27 19:12 Patch_template.properties

Patching Remote Client Installations
If you have EM CLI clients deployed to target servers, it is simple to track them by registering them with the OMS as
part of the EM CLI setup. Tracking information is retained in the OMS on all EM CLI client installation binaries that
require patching. It will also identify EM CLI installations that need to be updated with new passwords or synced with
new verbs from the OMS repository. Client software installations are not targets in OEM, so they are not tracked or
monitored by the EM agents.

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

22

EM Security Framework
Security is always on the top of anyone’s mind given the power behind the EM CLI. The command line has access to
the entire monitored environment, so it’s no surprise that this topic is included here.

As is standard with any Oracle security practice, hardening of servers—removing services and access to direct
OS-level files that are part of Oracle—is recommended as part of a security exercise.

Basic security design requires that we look from all monitored targets up through the Enterprise Manager
components, but there are white papers to address concerns outside of the EM CLI; we will focus on the command
line and Enterprise Manager in this section.

Security in the EM CLI
The security architecture for the EM CLI is built around the architecture in the Enterprise Manager 12c environment
and is often the first point of security concerns, as we’ve discussed above. The single point of access to the Enterprise
Manager via the EM CLI is the second concern. The credentials to the remote targets that you will be interacting with
via the EM CLI are the third level of access and are of even more concern, as these targets most likely include the
production targets of your database environment.

Secure Mode for EM CLI Setup
Looking at the second level of security, we will discuss what secure mode means in the EM CLI. Secure mode EM
CLI, which is the installation mode by default, does not store any Enterprise Manager or SSO passwords on local disk
or in logs and files.

By default, the EM CLI login automatically times out after reaching a set point for inactivity, and the user must log
in again before attempting to issue any other commands via the EM CLI.

If you wish to set up the EM CLI installation to log in automatically upon re-issue of a verb and demand an
explicit logout of the EM CLI, execute the following command:

> emcli setup –noautologin

HTTPS Trusted Certificate
Setting up HTTPS trusted certificates first requires a quick check to verify it hasn’t already been done. This can be
achieved with an EM CLI status after the following sync, as shown in Figure 2-17:

> emcli status

Figure 2-17. Issuing the status call from the EM CLI to view information about the Enterprise Manager Command-Line
Interface and https status

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

23

Check the EM URL value to see if a secure HTTPS URL is already being used for the connection. If not, this can be
configured with an EM CLI verb call:

> emcli setup –url="http[s]://host:port/em" –username="<username>” [-trustall] [-novalidate]

You will be asked to provide the SYSMAN password to complete this security-level configuration change to the
EM console. Enter the password and press Return to complete the setup. Running the emcli status verb call will
show the updated value for the EMURL, or one can use the emcli setup call to view it (Figure 2-18).

Figure 2-18. Issuing the setup command to verify a secure https connection for the EM URL used by the EM CLI and
Enterprise Manager console

Verbs of Great Value in Release 4
As with each of the EM12c releases, there have been great enhancements and the introduction of new verbs to be used
with the EM CLI. Release 4 (12.1.0.4) was no different, and there were updated patches to complete the release, as
dependencies for the verbs from other product lines were released as well.

Gold Agent Update Verbs
The “gold agent” verbs were one of those verb groups that were released in a patch versus being part of the initial
Release 4. They were listed with the initial EM CLI release documentation and help file, but were not actually available
until the patch. See here:

get_agent_update_status: Shows all agent update results using a gold image

get_not_updatable_agents: Shows agents that can’t be updated as part of a gold image

get_updatable_agents: Shows updatable agents for a given gold agent image name or part
of a gold image series

BI Publisher Reports Verbs
Release 4 included BI Publisher as part of the installation. The compact install, which is now only approximately 300
MB in size, required only a few EM CLI commands to grant access and features to an Enterprise Manager user:

grant_bipublisher_roles: Grants access to the BI Publisher catalog and features

revoke_bipublisher_roles: Revokes access to the BI Publisher catalog and features

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

24

Cloud Service Verbs
Cloud offerings improved significantly with Release 4, and the ability to manage cloud requests, users, and service-
instance data from the command line was essential to simplifying task management for cloud services:

cancel_cloud_service_requests: Cancel the cloud requests. Either user or names option
should be provided

delete_cloud_service_instances: Deletes the cloud service instances based on the
specified filter

delete_cloud_user_objects: Deletes cloud user objects, including cloud service instances
and requests

get_cloud_service_instances: Retrieves the list of cloud service instances. All instances
will be printed if no option is specified.

get_cloud_service_requests: Retrieves the list of cloud requests. All requests will be
printed if no filter is applied.

get_cloud_user_objects: Retrieves the list of cloud user objects, including cloud service
instances and requests. All objects will be printed if user option is not used.

Miscellaneous Verbs
There were significant changes to blackouts in Release 4, one of which was to allow for retroactive blackouts within
the console, as well as within the command line:

create_rbk: Creates retroactive blackout on given targets and updates their availability.
The retroactive blackout feature needs to be enabled from the UI for using this emcli
command.

Orphan targets have been an issue for a while. Having the new compliance-enhancement verb addresses
this problem:

fix_compliance_state: Fix compliance state by removing references in deleted targets.

The following verb is to support the complex composite targets in WebLogic environments. Having a specific
verb designed to modify these targets is essential:

modify_monitoring_agent: This verb can be used to change the agents that are configured
to monitor targets in a WebLogic domain.

Fusion Middleware Provisioning Verbs
Fusion Middleware has a number of verb additions and enhancements to help manage WebLogic features and build
out more options from the command line:

create_fmw_domain_profile: Creates a Fusion Middleware Provisioning Profile from a
WebLogic domain

create_fmw_home_profile: Creates a Fusion Middleware Provisioning Profile from an
Oracle home

create_inst_media_profile: Creates a Fusion Middleware Provisioning Profile from
installation media

Chapter 2 ■ InstallatIon and seCurIty Framework and em12C release 4

25

Job Verbs
There were a number of enhancements to the EM Job Service. These enhancements enable us to export and import
jobs from one EM12c Release 2 OMS to a same version or higher environment. For better job management options,
Oracle has also added more-advanced job control from the EM CLI with Release 4:

export_jobs: Exports all matching job definitions in EM, including corrective actions.
System jobs and nested jobs are excluded.

import_jobs: Imports all job definitions in to EM, including corrective actions from zip
files. Library jobs are created. EM CLI logged-in user is set as the library job owner.

job_input_file: Specifies some or all properties for the job verb in a property file.
Properties set on the command line override values set in the file.

resume_job: Resumes a job or a set of jobs matching the filter criteria.

suspend_job: Suspends a job or a set of jobs matching the filter criteria.

Target Data Verbs
create_assoc: Creates target association instances

delete_assoc: Deletes target association instances

list_allowed_pairs: Lists allowed association types for the specified source and
destination target types

list_assoc: Lists associations between the specified source and destination targets

manage_agent_partnership: Overrides Enterprise Manager’s default behavior of
automatically assigning partner agents to other agents. A partner agent is an agent that,
in addition to its other functions, is assigned to another agent as its “partner” in order to
remotely monitor the availability of that agent and its host. This verb is not meant to be
commonly used. It is provided to support special circumstances where an administrator
might want to explicitly assign agent partnerships or exclude agents from being partners, or
exclude agents from being remotely monitored by other agents.

Summary
For most readers, verb procedural calls have been the largest consumer of EM CLI work. Being familiar with the
significant verb changes in 12.1.0.4 is crucial, but for the remainder of the book, we are going to build out your
knowledge with the goal of scripting within the Enterprise Manager Command-Line Interface.

27

Chapter 3

Terminology and Basics

EM CLI can seem overwhelming at first, as with any command-line utility. But like anything else in technology, the
more one understands how something works, the more useful and the easier it will be to work with.

There is too much information in EM CLI to memorize even a small part of it. Documention is as critical as the
tool itself. Understanding the terminology that the documentation, built-in manuals, and the tool itself use will allow
you to quickly find what you need by asking the right questions. For example, if you are looking for the command to
create a user, you need to know you are searching for a verb, not a parameter or a variable.

Once one understands EM CLI’s terminology, a basic understanding of its functionality allows one to
immediately get started with basic tasks, and that is where the real learning begins. This chapter introduces the basics
of EM CLI first by explaining how it works with Enterprise Manager and then by providing a number of detailed
examples.

Terminology: Verbs
EM CLI functionality uses verbs to perform actions. A verb is a task or action in the form of a user command that
exposes Enterprise Manager functionality. Understanding verbs and how they are used to accomplish tasks is
essential to fully utilizing EM CLI.

Verbs can include one or more parameters. The mode being used determines what those parameters look like.
For example, when using EM CLI in command-line mode, the parameters are positional arguments that follow the
verb. Each argument is preceded by a dash and followed by an equal sign. The argument may then be assigned a
value, which is usually enclosed with quotation marks.

Some of the parameters are required and some are optional. The documentation identifies optional arguments
by enclosing them in brackets. For example, the clear_privilege_delegation_setting verb has one required
argument and two optional arguments (Listing 3-1).

Listing 3-1. Required and optional parameters for the clear_privilege_delegation_setting verb

emcli clear_privilege_delegation_setting
 -host_names="name1;name2;..."
 [-input_file="FILE:file_path"]
 [-force="yes/no"]

As of version 12.1.0.3, there are 362 verbs. To more easily help you find and manage verbs, they are grouped
into 58 categories. The categories represent logical functionality. For example, if you were looking for verbs related
to patching, you would find them in the Patch Verbs category. If you were looking for verbs related to blackouts, you
would look in the Blackout Verbs category.

Chapter 3 ■ terminology and BasiCs

28

The verbs are named in a way that leaves little doubt as to what they do. Some of the names are short, such as
login and start_agent, and some very long, such as update_monitoring_creds_from_agent and
list_target_privilege_delegation_settings. This nomenclature has the benefit of making it relatively easy to
remember verbs as well as making it easy to look up a verb based on its functionality.

Modes
EM CLI is invoked in one of three different modes. The mode is the method of using EM CLI. The decision to use one
mode over another depends on the purpose and scope of the task.

Command-line
Prior to version 12.1.0.3, EM CLI operated in just one mode—command-line. In command-line mode, EM CLI
executes one verb per invocation of the emcli executable. There is no subshell or programming interface for
EM CLI in command-line mode. Any scripting of EM CLI needs to be done with a shell that can call individual EM CLI
commands and process the output.

Interactive
With the release of version 12.1.0.3, EM CLI now includes the classic command-line mode as well as interactive and
scripting modes. Interactive mode allows EM CLI to be invoked as a subshell of whatever terminal is being used.
When EM CLI is running in interactive mode, the prompt changes to a custom Python prompt:

cd $OMS_HOME/bin
./emcli
emcli>

Scripting
Scripting mode does not have a subshell or a prompt. In fact, it is very similar to command-line mode, except that its
invocation allows as its first parameter a script written in the Python-compatible programming language. This script
is then executed as if the commands were typed into interactive mode. EM CLI in scripting mode is invoked one time
but unlike while in command-line mode, the full functionality of the Python programming language can be used to
do everything for which a shell is required in command-line mode. In addition, scripting mode invokes EM CLI in its
native form, which makes things like parsing the output of commands much easier and more efficient, especially with
the use of JSON.

Help!
EM CLI has built-in help functionality. Getting a general list of available verbs for command-line mode is as
simple as executing EM CLI with the verb help. Be prepared for a large amount of data if you are not qualifying the
command with additional parameters. If you need additional information on a particular verb, add the verb as the
second parameter.

To use help in interactive mode, the help functionality is called by using a Python function called help().
The help() function requires only one parameter—the help topic. The help topic can be a verb function as well as
certain verb function parameters. Be aware that there are help topics included in interactive mode that don’t exist

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ terminology and BasiCs

29

in command-line mode. For example, the command-line mode uses setup files to hold EM CLI properties, but
interactive and scripting modes do not. The properties are set each time interactive or scripting modes are invoked.
We can use the help() function to view which parameters to use to set properties, as shown in Listing 3-2.

Listing 3-2. Client properties help page

emcli>help('client_properties')
EMCLI_OMS_URL : OMS URL To connect to.
EMCLI_USERNAME : OMS Username.
EMCLI_AUTOLOGIN : Possible values are true,false. Default is false.
EMCLI_TRUSTALL : Possible values are true,false. Default is false.
EMCLI_VERBJAR_DIR : Location of bindings directory.
EMCLI_CERT_LOC : Location of a valid certificate file.
EMCLI_LOG_LOC : Directory where log files will be stored.
EMCLI_LOG_LEVEL : Possible values are ALL,INFO,FINE,FINER,WARN,SEVERE. Default is SEVERE.
EMCLI_OUTPUT_TYPE : Possible values are json, JSON, text, TEXT. Default is json in script

mode and text in interactive mode.

status() will list values of all the client properties. set_client_property(propertyname,value) and
get_client_property(propertyname)can be used to set and get a client property.

Understanding Error Codes
There are a number of error codes that you might see when using EM CLI. The information provided in these error
codes is critical to determining what caused the error. The error codes shown below are some of those that are seen
most often; they almost always have an easy fix.

Command-line mode requires a login session to be established before any commands can be executed. In secure
environments and by default, the login session will expire after 45 minutes. When a valid command is executed without
an established login session when in command-line mode, an error is thrown with an exit code of 255. In order to
proceed, a valid session will need to be established by using the login verb, as shown in listing 3-3.

Listing 3-3. Login error message and exit code in command-line mode

[oracle oms]$ emcli get_targets
Error: Session expired. Run emcli login to establish a session.
[oracle oms]$ echo $?
255

Interactive and scripting modes require that the connection parameters be included each time a script is
executed or an interactive session is established. If the connection URL has not been specified, an error will be thrown
with details on how to establish the connection, as shown in listing 3-4.

Listing 3-4. Settings error in interactive and scripting modes

emcli>get_targets()
Error: EM URL is not set. Do set_client_property('EMCLI_OMS_URL', '<value>')
Or set it as environment variable.

[oracle ~]$ emcli @test.py
Traceback (most recent call last):
 File "test.py", line 1, in <module>
 get_targets()

Chapter 3 ■ terminology and BasiCs

30

 File "<string>", line 41, in get_targets
emcli.exception.VerbExecutionError: Error: EM URL is not set.
Do set_client_property('EMCLI_OMS_URL', '<value>')
Or set it as environment variable.

Errors can be caused by myriad reasons. The EM CLI developers have done an excellent job of making the error
messages descriptive and useful. When you encounter errors, read the description thoroughly in order to understand
what issue caused it. When in doubt, search for the error in the documentation or on the Internet. Chances are,
someone else has already found and fixed the cause of the error.

Syntax
The EM CLI program can be used in three different modes. These are command-line mode, interactive mode, and
scripting mode. Up until version 12.1.0.2, there was only the command-line mode. The interactive and scripting
modes became available in version 12.1.0.3, along with an exposed programming interface that uses Jython.

The standard command-line mode hasn’t changed much since Grid Control 10g. With few exceptions, scripts
used with previous versions of EM CLI will continue to work with the latest version or 12c. The command-line
syntax is the emcli command, followed by one verb, followed by zero or more verb options or parameters, as shown
in this example:

emcli create_group -name=my_group -add_targets="mymachine.example.com:hostname"

The interactive and scripting modes both use the Jython programming language. The interactive mode is a
single-user interactive session created by executing the emcli command without any parameters.

Standard Linux shell commands will not work in the interactive shell. The interactive mode of EM CLI can be
closed using the command exit() or by typing ctrl-d in Linux or ctrl-z in Windows.

Interactive mode syntax differs from that of the standard command-line mode. Once an interactive mode shell
has been established, it is no longer necessary to use the emcli command. Executing an EM CLI command is done
by putting a verb into the shell directly and enclosing the verb options within parentheses. The verb options are not
preceded by a dash like they are in command-line mode, but rather are preceded by a comma when followed by other
options. The following shows the create_group function in interactive mode with the name and add_targets options:

emcli> create_group(name=my_group, add_targets="mymachine.example.com:hostname")

Scripting mode uses the same command syntax as the interactive mode but does not require the Jython shell.
All of the EM CLI commands to be executed would be formatted like the interactive shell command above and put
into a script, along with any other Python code to be included. The script is executed non-interactively by following
the emcli command with an @ symbol and the name of the script:

[oracle ~]$ emcli @my_script.py

Setup
EM CLI is included in every OMS installation and is set up to connect to that OMS automatically. The setup
configuration can be confirmed with the setup verb. Running the command in command-line mode shows that
EM CLI is configured to connect to https://oem.example.com:7802/em with the SYSMAN user, as shown in Listing 3-5.

https://oem.example.com:7802/em

Chapter 3 ■ terminology and BasiCs

31

Listing 3-5. Output of EM CLI setup in command-line mode

[oracle ~]$ emcli status
Oracle Enterprise Manager 12c EMCLI12.1.0.3.0.
Copyright (c) 1996, 2013 Oracle Corporation and/or its affiliates. All rights reserved.

Instance Home : /u01/app/oracle/product/12.1.0/gc_inst/em/EMGC_OMS1/sysman/

emcli/setup/.emcli
Verb Jars Home : null
Status : Configured
EMCLI Home : /u01/app/oracle/product/12.1.0/mw_1/oms/bin
EMCLI Version : 12.1.0.3.0
Java Home : /u01/app/oracle/product/12.1.0/mw_1/jdk16/jdk/jre
Java Version : 1.6.0_43
Log file : /u01/app/oracle/product/12.1.0/gc_inst/em/EMGC_OMS1/sysman/

emcli/setup/.emcli/.emcli.log
EM URL : https://oem.example.com:7802/em
EM user : SYSMAN
Auto login : false
Trust all certificates : true

After installing EM CLI on a system other than the OMS server, it must be explicitly configured before it will
function with an Enterprise Manager installation. Executing the setup command against an EM CLI installation that
has not yet been configured returns an error, as shown in Listing 3-6.

Listing 3-6. An EM CLI installation that has not yet been set up

[oracle ~]$ emcli setup
Oracle Enterprise Manager 12c 3.
Copyright (c) 1996, 2013 Oracle Corporation and/or its affiliates. All rights reserved.

No current OMS

The configuration is done with the setup verb followed by a number of parameters. The url parameter is the
same as the address used in the browser to login to Enterprise Manager. The dir parameter specifies the directory in
which to install the client. The username parameter indicates which username the client will use for connecting. This
noautologin parameter determines that a user name and password will need to be provided in order to gain access to
the OMS before an EM CLI session can be established. The trustall parameter indicates that certificates on the OMS
will be trusted automatically. The following dir parameter in the EM CLI setup command is using shell expansion to
indicate that the installation directory is the current working directory:

[oracle ~]$ emcli -url=https://<hostname of grid server>:1159/em -dir=$(pwd)
-username=<username> -noautologin -trustall

Running the setup command in interactive mode reveals that neither the URL nor the user has been defined. This
is because these parameters must be set each time for both interactive and scripting modes, as shown in Listing 3-7.

https://oem.example.com:7802/em

Chapter 3 ■ terminology and BasiCs

32

Listing 3-7. Executing the setup function in interactive mode

emcli>status()
Oracle Enterprise Manager 12c EMCLI with Scripting option Version 12.1.0.3.0.
Copyright (c) 1996, 2013 Oracle Corporation and/or its affiliates. All rights reserved.

Verb Jars Home (EMCLI_VERBJAR_DIR) : /u01/app/oracle/product/12.1.0/mw_1/oms/bin/bindings/

default/.emcli
EMCLI Home (EMCLI_INSTALL_HOME) : /u01/app/oracle/product/12.1.0/mw_1/oms/bin
EMCLI Version : 12.1.0.3.0
Java Home : /u01/app/oracle/product/12.1.0/mw_1/jdk16/jdk/jre
Java Version : 1.6.0_43
Log file (EMCLI_LOG_LOC) : CONSOLE
Log level (EMCLI_LOG_LEVEL) : SEVERE
EM URL (EMCLI_OMS_URL) : NOT SET
EM user (EMCLI_USERNAME) : NOT SET
Auto login (EMCLI_AUTOLOGIN) : false
Trust all certificates (EMCLI_TRUSTALL) : false

Once the setup is complete and a valid Enterprise Manager has been authenticated, EM CLI will be ready to
carry out tasks against EM. Setup is often where problems can be found, especially during the initial setup. For example,
you may not know that the port used by EM is blocked between the server on which EM CLI was installed and the OMS.
The setup process will reveal this fact. Once a connection has been established with a successful login, the
EM CLI setup process is complete.

Communication
A number of tasks can be accomplished with either EM CLI or EMCTL. The choice of which tool to use will depend on
a number of factors, such as which tool is available to use or which is more efficient for a particular task. The method
in which the tool will interface with Enterprise Manager may be an additional factor to consider.

EM CLI
EM CLI is a client of the Oracle Management Server (OMS) just as SQL*plus is a client of the database. The Enterprise
Manager OMS installation includes an installation of EM CLI. The EM CLI executable is located in the OMS home
directory, <OMS_HOME>/bin/emctl. EM CLI communicates with the OMS using HTML through the same port and URL
that is used to access the Enterprise Manager graphical interface.

A network trace run on the port used for HTTP communication between EM CLI and Enterprise Manager would
show that all of the requests from EM CLI are GET and POST requests via HTTP. These are the same requests that come
from the GUI console when establishing a logon.

The way EM CLI interfaces with Enterprise Manager allows it to connect from any location where a network
connection can be established to the IP and port of the OMS, which gives EM CLI a distinct advantage over EMCTL in
cases where the commands need to be run from a server other than the one hosting the OMS agent.

EMCTL
EMCTL communicates directly with the agent with which it is installed. EMCTL will only communicate with its own
agent, even when other agents are running on the same server.

Chapter 3 ■ terminology and BasiCs

33

Note ■ there is also an emCtl interface that controls and communicates directly with the oms and it has a com-
pletely different set of commands.

The emctl command located in <AGENT_BASE>/agent_inst/bin is a shell or batch script that sets environment
variables and executes the <AGENT_HOME>/bin/emctl command with the parameters fed to the first command.
The <AGENT_HOME>/bin/emctl is also a shell or batch script that sets environment variables as well as sources a number
of other files. It then executes a perl script with the parameters fed to the first command. This perl script sources a number
of other perl scripts and either reads existing state files or interacts directly with the java agent process for a result.

Because EMCTL interacts directly with the java agent process, it is not considered a client. This also means that
the agent cannot be remotely controlled using EMCTL.

EMCTL versus EM CLI
When to use EMCTL versus EM CLI is largely based on preference and environment limitations. For example, both
commands can control blackouts in Enterprise Manager. In one environment, there may be a limitation on installing
the EM CLI remotely or locally because of the Java version it requires or the port access it needs, making EMCTL the
better option. In another environment, there may be a restriction on shell access on an agent server, making EM CLI
the better option. Understanding the architecture differences between EMCTL and EM CLI will help with the decision
of using one versus the other in different circumstances.

The syntax of EM CLI is relatively straightforward; emcli followed by a verb, followed by mandatory and optional
parameters. The syntax of EMCTL is not as easy to understand and does not follow a strict format.

For most commands the format is as follows: emctl followed by a verb, followed by agent. For some configuration
commands the format is: emctl followed by config agent, followed by a verb such as listtargets or secure.
Generally, the easiest way to figure out the syntax of the EMCTL command you want to execute is to look up the
documentation online or to print out the help text by executing the emctl command without any arguments. The help
text will print to the screen.

This help text can be made searchable by redirecting it to a file that can be opened and searched or by piping the
output to a searchable line reader such as less:

emctl > help.txt; vim help.txt
emctl | less

Now that we’ve reviewed a number of important concepts and definitions, let’s look at some real-world examples
that can be used to accomplish many of the most common tasks for which one might use EM CLI.

The first task, Login, is one that must be done for each session of EM CLI, regardless of which mode is used. The
other tasks are examples of using EM CLI when the GUI is not a suitable option, such as within scheduled scripts or
when working with large numbers of targets.

Task: Establish a Login
There is little useful functionality of EM CLI without having a connection to an OMS. Creating that connection is
usually the first step of using the interface. How to establish a connection depends on the mode being used.

When using command-line mode, a login will not need to be established if the -autologin parameter was
specified during setup, since this parameter indicates that the credentials used during the install of EM CLI are stored
in the installation files and are used for every command automatically. A login is established using the login verb. The
login verb must be followed by the -username parameter and can optionally be followed by the -password parameter.

Chapter 3 ■ terminology and BasiCs

34

It is inadvisable to include the password on the command line because of the security implications of exposed
passwords. If the password is not included as a parameter, EM CLI will prompt the user for a password, and the characters
entered will not be echoed to the screen, nor will the password be exposed when looking at the running processes using
the ps command. If the -autologin parameter was not specified during setup, a login session will prompt for a password:

[oracle ~]$ emcli login -username=sysman
Enter password :

Login successful

In the case of running EM CLI in scripting or interactive mode, the login information must be explicitly given for
each script execution and at the beginning of each interactive session. These two modes do not use the credentials
established during setup, even if the -autologin parameter was used.

A simple script can be created to establish a connection and can be used in both interactive and scripting modes.
The login script needs to specify the URL by which to connect, the SSL authentication method, and a login credential.
Both of these modes expect a Python script (Listing 3-8).

Listing 3-8. Login script to be used in interactive and scripting modes

from emcli import *

set_client_property('EMCLI_OMS_URL', 'https://oem.example.com:7802/em')
set_client_property('EMCLI_TRUSTALL', 'true')

myLogin(username='sysman')

myLogin()

Placing this text in a file with an extension of .py makes it a module that can be imported into EM CLI. For example,
the script can be called login.py and placed in the /home/oracle/scripts directory. However, EM CLI will not
necessarily be able to find the script, because this path is not in the default Jython path. Explicitly defining the Jython
search path will guarantee that any scripts within that search path can be imported by EM CLI. The JYTHONPATH
variable can be supplemented with the additional directory:

export JYTHONPATH=$JYTHONPATH:/home/oracle/scripts

Similar to how the EM CLI Jython module was imported into the script with the command from emcli import *,
the login script can be imported into either the interactive or scripting modes. To establish a login in interactive mode,
we can simply import the module. We will then be prompted to enter the password for the user specified in the script.
Listing 3-9 shows an example of using the login script in interactive mode.

Listing 3-9. Establishing a logon in interactive mode using the login module

[oracle ~]$ emcli
Oracle Enterprise Manager 12c EMCLI with Scripting option Version 12.1.0.3.0.
Copyright (c) 1996, 2013 Oracle Corporation and/or its affiliates. All rights reserved.

Type help() for help and exit() to get out.

emcli>import login
Enter password : *********

emcli>

https://oem.example.com:7802/em

Chapter 3 ■ terminology and BasiCs

35

To establish a login in scripting mode, import the module from within the script being executed. For example,
the following script prints the total count of Enterprise Manager targets using an EM CLI function. But first it needs to
establish a login by importing the login module, as shown in Listing 3-10:

Listing 3-10. Establishing a login in scripting mode using the login module

import emcli
import login

mytargets = str(len(emcli.get_targets().out()['data']))

print(mytargets)

Task: Get a List of Targets
Viewing and manipulating Enterprise Manager targets are the most common uses of EM CLI. Regardless of which you
are doing, the first step is to retrieve the target information.

The get_targets verb or function retrieves a target list along with a number of other columns of information.
Neither the verb nor function requires parameters to retrieve the full list of information, as shown in Listing 3-11.

Listing 3-11. Retrieve the target information using command-line mode

[oracle ~]$ emcli login -username=sysman
Enter password :

Login successful

[oracle ~]$ emcli get_targets
Status Status Target Type Target Name ID
1 Up host oem.example.com
1 Up oracle_emd oem.example.com:3872
-9 n/a oracle_home common12c1_20_oem

The targets that are retrieved can be filtered by specifying a semi-colon-delimited list of target names and target
types, which should be separated by a colon. There should be no white space anywhere within the target list filter.
Listing 3-12 shows an example of creating a filter with two targets.

Listing 3-12. Limit the targets retrieved by get_targets using the targets parameter

[oracle ~]$ emcli get_targets \
 -targets='oem.example.com:host;oms12c1_3_oem:oracle_home'
Status Status Target Type Target Name ID
1 Up host oem.example.com
-9 n/a oracle_home oms12c1_3_oem

The targets parameter can use wild cards anywhere within the target name or target type values, and multiple
wild cards can be used for either value, as shown in Listing 3-13.

Chapter 3 ■ terminology and BasiCs

36

Listing 3-13. Use wildcards in the targets parameter

[oracle ~]$ emcli get_targets \
 -targets='oem%:host;oms12c1_%_oem:%oracle%'
Status Status Target Type Target Name ID
1 Up host oem.example.com
-9 n/a oracle_home oms12c1_3_oem

Python functions require a specific format: function name, followed by an opening parenthesis, followed
by a comma-delimited list of parameters and their values, followed by a closing parenthesis.

Following is an example of a typical python function:

function_name(parameter1=value1, parameter2=value2)

Since the EM CLI verbs in interactive and scripting modes are actually Python functions, they will need to follow
this format as well.

Calling a function without additional parameters only requires the verb and a pair of parentheses. Listing 3-14
shows the results of using the get_targets function in interactive mode without parameters while Listing 3-15 shows
the same function in scripting mode with the targets parameter.

Listing 3-14. Call the get_targets() function in interactive mode without parameters

[oracle ~]$ emcli
Oracle Enterprise Manager 12c EMCLI with Scripting option Version 12.1.0.3.0.
Copyright (c) 1996, 2013 Oracle Corporation and/or its affiliates. All rights reserved.

Type help() for help and exit() to get out.

emcli>import login
Enter password : *********

emcli>get_targets()
Status Status Target Type Target Name ID
1 Up host oem.example.com
1 Up oracle_emd oem.example.com:3872
-9 n/a oracle_home common12c1_20_oem

Listing 3-15. Call the get_targets() function in scripting mode with the targets parameter

[oracle ~]$ cat targets2.py
import emcli
import login

mytargets = emcli.get_targets \
 (targets='oraoem1%:%;oms12c1_%_oraoem1:%oracle%') \
 .out()['data']

for targ in mytargets:
 print('Target: ' + targ['Target Name'])

Chapter 3 ■ terminology and BasiCs

37

[oracle ~]$ emcli @targets2.py
Target: oraoem1.example.com
Target: oraoem1.example.com:3872
Target: oms12c1_3_oraoem1

Task: Using Blackouts
Attempting to schedule blackouts to coincide with maintenance tasks on a target host can produce false-positive
alerts. This can happen when a blackout finishes prior to a maintenance activity or when a maintenance activity
starts prior to a blackout. Both of these scenarios can be avoided by having the maintenance job itself start and stop
the blackout.

Both EMCTL and EM CLI are capable of creating, deleting, starting, and stopping blackouts. However, EMCTL
is only capable of managing blackouts for the targets local to the agent host from which it is executed, and EMCTL
commands will only work if the agent is running. The limitations of setting blackouts with EMCTL are restrictive and
prone to error. It is recommended to use EM CLI to set blackouts from maintenance jobs.

It is usually not necessary to use scripting mode for blackout activities since most maintenance scripts run in
a shell script. The create_blackout verb requires four arguments: name, add_targets, schedule and reason. The
job is identified by the name parameter, which means it must be unique to all other jobs in EM. Listing 3-16 shows
an example of using EM CLI in command-line mode to set a blackout called “Blackout1” for the “ em12cr3.example.com”
host. This blackout will not repeat and will last for three hours or until it is stopped. The reason the blackout has been
set is for “Testing.”

Listing 3-16. Set a blackout called “Blackout1” for the “em12cr3.example.com” host

[oracle ~]$ emcli create_blackout -name='Blackout1' \
-add_targets='em12cr3.example.com:host' \
-schedule='frequency:once;duration:3' \
-reason='Testing'

The get_blackouts verb will show the details of all of the blackouts that are currently defined, as shown in
Listing 3-17.

Listing 3-17. List all blackouts

[oracle ~]$ emcli get_blackouts
Name Created By Status Status ID Next Start Duration Reason Frequency
Blackout1 SYSMAN Scheduled 0 2435-07-24 17:17:56 03:00 Testing once

Repeat Start Time End Time Previous End TZ Region TZ Offset
none 2000-07-24 17:17:56 2000-07-24 20:17:56 none America/Chicago +00:00

The following example uses the noheader and script parameters to change the output of get_blackouts to be
easily parsed. Piping the output to the cut command displays only the first field, which is the blackout name field.

[oracle ~]$ emcli get_blackouts -noheader -script | cut -f1
Blackout1

Chapter 3 ■ terminology and BasiCs

38

The blackout job details can be queried with the get_blackout_details verb. The output includes a header and is tab
delimited. If the output lines are longer than the screen width, they are wrapped to the next line, as shown in Listing 3-18.

Listing 3-18. List the details of the “Blackout1” blackout

[oracle ~]$ emcli get_blackout_details -name='Blackout1'
Status Status ID Run Jobs Next Start Duration Reason Frequency Repeat Days
Started 4 no 2014-04-12 13:37:28 03:00 Testing once none none

Months Start Time End Time TZ Region TZ Offset
none 2014-04-12 13:37:28 2014-04-12 16:37:28 America/Chicago +00:00

The format above is hard to read and even harder to parse. Instead, the output could be changed to a
comma-delimited format, the header removed, and the output limited only to the columns we need, as shown
in Listing 3-19.

Listing 3-19. List the details of the “Blackout1” blackout in a format that is easier to parse

[oracle ~]$ emcli get_blackout_details \
-name='Blackout1' -noheader -format="name:csv"
 Started,4,no,2014-04-12 13:37:28,03:00,Testing,once,none,none,none,2014-04-12 13:37:28,
2014-04-12 16:37:28,America/Chicago,+00:00

Once the output can be parsed, we can just test for the value we are looking for by adding the commands to a
shell script, creating the “Blackout1” target, as shown in Listing 3-20.

Listing 3-20. Create a blackout in a script and test the exit value

emcli create_blackout -name='Blackout1' -add_targets='em12cr3.example.com:host'
-schedule='frequency:once;duration:3' -reason='Testing'

MYSTATUS=$(emcli get_blackout_details -name='Blackout1' \
-noheader -format='name:csv' | cut -d ',' -f 1)

if ["$MYSTATUS" <> "Started"]; then
echo 'Blackout not started'
 exit 1
fi

<Maintenance Script>

By using the above in your scripts, you would notice that after multiple runs it would sometimes fail and
sometimes succeed. This behavior happens because the create_blackout EM CLI verb creates but does not start the
job. The job is started by another process, so there is a chance that the blackout has not started by the time the
if statement that checks the status of the job has executed, and thus the script will fail. A solution is to use additional
shell scripting, which will either wait for the job to start before proceeding to the rest of the script or will fail because
the job stayed in “Scheduled” mode for too long, as shown in Listing 3-21.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ terminology and BasiCs

39

Listing 3-21. Additional shell scripting added to make events sequential

MYSTATUS='Scheduled'
STATCOUNT=6

while ["$MYSTATUS" == "Scheduled"]; do
 if [$STATCOUNT -lt 1]; then
 echo "Blackout1 stuck in scheduled status"
 exit 1
 fi

 let STATCOUNT-=1
 sleep 5
 MYSTATUS=$(emcli get_blackout_details -name='Blackout1' \
 -noheader -format='name:csv' | cut -d ',' -f 1)
done

if ["$MYSTATUS" != "Started"]; then
 echo 'Blackout Blackout1 not started'
 exit 1
fi

<Maintenance Script>

When maintenance is completed, the same script can use EM CLI commands to both close and delete the blackout:

emcli stop_blackout -name='Blackout1'
emcli delete_blackout -name='Blackout1'

Task: Create Targets
Adding targets can be painful if EM doesn’t auto-discover them. This is especially true if the targets are using
non-default settings, which sometimes make them hard for the agent to detect. Fortunately, EM CLI is able to add
targets with much more flexibility than EM.

Which parameters need to be specified greatly depends on the target type being added. For example, when
adding a database, the properties parameter needs to include:

SID•	

Port•	

OracleHome•	

MachineName•	

The credentials for a database are almost always going to be for the “dbsnmp” user unless they are for a standby
database that is not open and therefore requires a privileged password file account. Listing 3-22 shows an example of
adding a target through EM CLI command-line mode.

Chapter 3 ■ terminology and BasiCs

40

Listing 3-22. Add the “orcl” single-instance database target

[oracle ~]$ emcli add_target -name='ORCL_DB' \
-type='oracle_database' -host='oradb1.example.com' \
-properties='SID:orcl;Port:1521;OracleHome:/u01/app/oracle/product/12.1.0/dbhome_1;
MachineName:oradb1-vip.example.com' \
-credentials='Role:NORMAL;UserName:DBSNMP;password:<password>'
Target "ORCL_DB:oracle_database" added successfully

If we want to add an RAC database target, the individual instances of the cluster need to be added first, as shown
in Listings 3-23 and 3-24.

Listing 3-23. Add RAC database node one

[oracle ~]$ emcli add_target -name='ORCL1_ORCL_RACCLUSTER'\
-type='oracle_database' -host='oradb1.example.com' \
-properties='SID:orclrac1;Port:1521;OracleHome:/u01/app/oracle/product/12.1.0/dbhome_1;
MachineName:oradb1-vip.example.com' \
-credentials='Role:NORMAL;UserName:DBSNMP;password:<password>'
Target "ORCL1_ORCL_RACCLUSTER:oracle_database" added successfully

Listing 3-24. Add RAC database node two

[oracle ~]$ emcli add_target -name='ORCL2_ORCL_RACCLUSTER'\
-type='oracle_database' -host='oradb2.example.com' \
-properties='SID:orclrac2;Port:1521;OracleHome:/u01/app/oracle/product/12.1.0/dbhome_1;
MachineName:oradb2-vip.example.com' \
-credentials='Role:NORMAL;UserName:DBSNMP;password:<password>'
Target "ORCL2_ORCL_RACCLUSTER:oracle_database" added successfully

Once the instances are added, the database cluster target can be added, specifying the instances as part of the
properties of the EM CLI command. These instances then become associated with the database cluster target.

Note ■ Because we are adding a cluster target, a Cluster ware target must already exist before adding database
cluster targets, as shown in listing 3-25.

Listing 3-25. Add RAC database cluster, associating the two previous database instances

[oracle ~]$ emcli add_target -name='ORCL_RACCLUSTER' \
-host='oradb1.example.com' -monitor_mode='1' \
-type='rac_database' -properties='ServiceName:orclrac;ClusterName:oradb-cluster' \
-instances='ORCL1_ORCL_RACCLUSTER:oracle_database;ORCL2_ORCL_RACCLUSTER:oracle_database'
Target "ORCL_RACCLUSTER:rac_database" added successfully

One can use EM CLI to add almost any target type. The auto-discovery tool in EM will accurately detect most
targets, making it easy to promote those targets. When an environment has customized configurations that make the
auto-discovery mechanism unreliable, adding targets manually is the only option. In some environments, scripting
the process of adding targets can be used to migrate between versions or to replicate an environment. In these
circumestances, using EM CLI to add targets becomes a necessity.

Chapter 3 ■ terminology and BasiCs

41

The add_target verb accepts over a dozen parameters; use the help functionality of EM CLI for a quick reference.
The online documentation provides a much more detailed description. Use the following reference if the command
help isn’t enough:

http://docs.oracle.com/cd/E24628_01/em.121/e17786/cli_verb_ref.htm#CACHFHCA.

My Oracle Support (MOS) also has dozens of articles on specific use cases and examples for EM CLI. MOS
notes 1448276.1 and1543773.1 offer specific information on using EM CLI to add targets.

Task: Manipulating Jobs
Jobs are very important in EM. There are a number of jobs that are already created and running in a default
installation. Many administrators use EM’s robust job scheduling and execution capabilities for their critical
enterprise tasks.

These capabilities can be fully exploited in both the GUI and EM CLI. For example, the GUI has a button called
“Create Like” in the jobs library that allows one to replicate the settings from one job to another in order to reduce
the amount of input necessary for two similar jobs. This functionality works great for a few jobs that look exactly alike
except for one or two changes.

But what if you need to create dozens or hundreds of jobs that are similar? Or you need to replicate a number
of jobs from one EM installation to another? EM CLI’s functionality of exporting jobs to a text file and then importing
jobs from the same file or a modified version of that file makes job manipulation at any scale possible.

For example, a simple job that executes the uname -a OS command can be exported to a file. The command and
job name can be changed to uname with a different flag. Then, the modified text file with the new variables can be used
to create a new job, as shown in Listing 3-26.

Listing 3-26. Describe the UNAME_A_OMS job

[oracle ~]$ emcli describe_job -name='UNAME_A_OMS'

Current status of the job is EXPIRED.
name=UNAME_A_OMS
type=OSCommand
owner=SYSMAN

target_list=oraoem1.example.com:host

Credential Usage: defaultHostCred
Description:
cred.defaultHostCred.<all_targets>:host=SET:HostCredsNormal

Description: (Optional) Comma separated list of parameters to the command.
variable.args=/bin/uname -a

Description: (Optional) Command to run on the target.
variable.command=%job_default_shell%

schedule.frequency=IMMEDIATE

http://docs.oracle.com/cd/E24628_01/em.121/e17786/cli_verb_ref.htm#CACHFHCA

Chapter 3 ■ terminology and BasiCs

42

The output from this command can be used as a property file to create a new job.

 1. Copy the text into a file and modify the variables as necessary (Listing 3-27).

 2. To save a step, use the shell capabilities to redirect standard output to a file.

 3. Copy the file just created to a new file and open that new file in a standard text editor
(Listing 3-27).

 4. Change the job name and command in the new file to reflect the new job (changes are
shown in bold; Listing 3-28).

Listing 3-27. Create the uname_a_oms.job job properties file and make a copy

[oracle ~]$ emcli describe_job -name='UNAME_A_OMS' > uname_a_oms.job
[oracle ~]$ cp uname_a_oms.job uname_r_oms.job

Listing 3-28. Create the uname_r_oms.job job properties file

[oracle ~]$ cat uname_r_oms.job

Current status of the job is EXPIRED.
name=UNAME_R_OMS
type=OSCommand
owner=SYSMAN

target_list=oraoem1.example.com:host

Credential Usage: defaultHostCred
Description:
cred.defaultHostCred.<all_targets>:host=SET:HostCredsNormal

Description: (Optional) Comma separated list of parameters to the command.
variable.args=/bin/uname -r

Description: (Optional) Command to run on the target.
variable.command=%job_default_shell%

schedule.frequency=IMMEDIATE

Create the new job, specifying the new properties file as the input file, as shown here:

[oracle ~]$ emcli create_job -input_file='property_file:uname_r_oms.job'
Creation of job "UNAME_R_OMS" was successful.

The UNAME_R_OMS job is now an active job. The same process can be used to create a job in the library by
specifying the describe_library_job verb:

[oracle ~]$ emcli describe_library_job -name='UNAME_A'> uname_a.job
[oracle ~]$ cp uname_a.job uname_r.job

Edit the uname_r.job file. Listing 3-29 shows the contents of the script and uses the create_library_job verb to
create the library job from the script.

Chapter 3 ■ terminology and BasiCs

43

Listing 3-29. Create the uname_a.job and uname_r.job library job properties files

[oracle ~]$ cat uname_r.job

Current status of the job is ACTIVE.
name=UNAME_R
type=OSCommand
owner=SYSMAN
kind=library

Credential Usage: defaultHostCred
Description:
cred.defaultHostCred.<all_targets>:host=SET:HostCredsNormal

Description: (Optional) Comma separated list of parameters to the command.
variable.args=/bin/uname -r

Description: (Optional) Command to run on the target.
variable.command=%job_default_shell%

schedule.frequency=IMMEDIATE

[oracle ~]$ emcli create_library_job -input_file='property_file:uname_r.job'
Creation of library job "UNAME_R" was successful.

Exporting jobs gives one the ability to easily duplicate jobs (both active and library), as well as to keep an external
backup of that job in a generic format. This backup can serve as a method of restoring the job to another system,
building a duplicate or test system, and producing an audit record if necessary.

Summary
The terminology of EM CLI can be confusing for someone who is not a regular user. Verbs define the functionality
of what you want to do with EM CLI. The “flavors” of how you make changes with EM CLI are known as modes.
Command-line mode is also known as classic mode, where one command is executed at a time. Interactive and
scripting modes use Python syntax and can additionally use the mature functionality of that powerful programming
language.

Given its size and complexity, it is impossible for someone to memorize everything about EM CLI. Even the
most advanced user will need the assistance of documentation on a regular basis. Fortunately, EM CLI is loaded with
help. From the excellent documentation found online to the manual pages contained within the command-line and
interactive modes of the tool itself, all of the information one needs is easily and readily available.

No one likes an error message, but when they pop up in EM CLI, they are descriptive and usually easy to read and
interpret. The syntax of errors in many products can be tricky, especially with all of the different tools administrators
have to switch between on a daily basis. The error syntax in EM CLI is intuitive and simple when compared to many of
those other tools.

EM CLI will already be fully configured and ready to use on each installed OMS. It is also easy to download,
install, and set up on any other machine that is capable of running Java. The method of communication between the
EM CLI client and the OMS is almost identical to the communication that takes place between the browser and the
OMS. Both are highly secure and use standard, mature technologies.

Chapter 3 ■ terminology and BasiCs

44

However, EMCTL is not going away any time soon. Despite the fact that EMCTL and EM CLI can do some of the
same things, they are vastly different in their purposes and functionality. Try not to make the mistake of dismissing
EMCTL as futile because of the robustness of EM CLI. You will need them both for different tasks.

The examples in this chapter show just a small sliver of what EM CLI can do, but chances are, you already have
in mind a few scenarios where EM CLI can solve a problem that the GUI and other command-line tools cannot. The
examples here are some of the most obvious ways to use EM CLI. There are multiple ways and tools by which to solve
most problems in Enterprise Manager. The examples shown in this book will never claim to be the “right” way to do
something. Use the information found here to come up with your own “right” way.

45

Chapter 4

Working at the Command Line

EM CLI is ideally suited for shell scripts, but it also simplifies tasks that are ordinarily performed in the console.
For instance, removing an EM agent and its related targets through the console can be quite trying. With EM CLI,
you issue a one-line command and the same tasks execute quickly and completely from the command line.

This chapter will introduce you to some of the basics of EM CLI at the command line and then illustrate several
ways you can apply EM CLI to administering your environment more quickly—without all the mouse clicks required
to perform the same tasks in the console.

We often associate the term “command line” with Unix, and that’s applicable here too, but do remember that
since EM CLI is a Java application it can be run on any platform. EM CLI runs the same whether you’re logged into a
server or executing the commands from your desktop.

Start an EM CLI Session
Although each CLI command is run on a separate line, when logging into EM CLI a single session is established for all
subsequent statements. The login verb establishes a connection to the OMS server and validates the user before any
work starts. You may either enter your password on the command line (not recommended for interactive sessions) or
wait to be prompted for the password during the login process.

The sync command ensures that your run-time execution uses the current verb definitions available in the
management server’s software library. This is particularly important after you’ve patched or upgraded your OMS.

emcli login -username="SYSMAN"

emcli sync

CLI References
Oracle document #E17786.12 contains a catalog of the EM CLI verbs available with the release of OEM 12.1.0.4. Check
with Oracle at http://docs.oracle.com/cd/E24628_01/em.121/e17786.pdf to make sure you have the latest version.

Help is also available online through EM CLI itself. The current listing of verbs known to your OMS software
library is available at the command line.

http://docs.oracle.com/cd/E24628_01/em.121/e17786.pdf

Chapter 4 ■ Working at the Command Line

46

emcli help

> emcli help

Summary of commands: argfile -- Execute emcli verbs from a file
 help -- Get help for emcli verbs (Usage: emcli help [verb_name])
 login -- Login to the EM Management Server (OMS)
 logout -- Logout from the EM Management Server
 setup -- Setup emcli to work with an EM Management Server
 status -- List emcli configuration details
 sync -- Synchronize with the EM Management Server
 version -- List emcli verb versions or the emcli client version

 Add Host Verbs
 continue_add_host -- Continue a failed Add Host session
 get_add_host_status -- Displays the latest status of an Add Host session.
 list_add_host_platforms -- Lists the platforms on which the Add Host operation can be

performed.
 list_add_host_sessions -- Lists all the Add Host sessions.
 retry_add_host -- Retry a failed Add Host session
 submit_add_host -- Submits an Add Host session.

 Agent Administration Verbs
 get_agent_properties -- Displays details of all properties of an agent
 get_agent_property -- Displays the value of specific property of an agent
 resecure_agent -- Resecure an agent
 restart_agent -- Restart an agent
 secure_agent -- Secure an agent
 set_agent_property -- Modify specific property of an agent
 start_agent -- Start an agent
 stop_agent -- Shut down an agent
 unsecure_agent -- Unsecure an agent
...

Add the name of a verb to the help command for specific guidance on that verb. The example below shows the
help result for the sync verb.

> emcli help sync
 emcli sync

 Description:

Synchronize the emcli client with the OMS.

 After synchronization, all verbs and associated online help
 available to that OMS become available at the emcli client.
 Synchronization automatically happens during a call to a setup.
 Options:
 -url
 The URL of the EM (OMS).
 Both http and https protocols are supported
 (https is recommended for security reasons).

Chapter 4 ■ Working at the Command Line

47

 -username
 The EM username to be used by all subsequent emcli commands
 when contacting the OMS.
 -password
 The EM user's password.
 If this option is not specified, the user is prompted
 for the password interactively.
 Providing a password on the command line is insecure and
 should be avoided.
 -trustall
 Automatically accept any server certificate from the OMS,
 which results in lower security.
 Also indicates that the setup directory is local and trusted.

The get_targets Verb
EM CLI verbs fall into three broad categories: EM queries, OEM administrative actions, and target manipulations.
Verbs use a very specific syntax, so the names of targets being passed to EM CLI must match the object’s name in
OEM’s dictionary.

The get_targets verb can be used to verify the target name prior to its use in any administrative or maintenance
task. For instance, let’s say you want to create a blackout for database orcl1 on host myhostx and that you promote
discovered database and listener targets through the automated process. The database target in OEM may have been
added as sidc_myhostx, by its RAC instance name, or perhaps by its global name. Sometimes it may even appear as its
service name or SID. This variability can occur when you use target promotion through Auto Discovery Results. You
should set target names manually when you add targets, using the guided discovery process to ensure consistency
across your enterprise.

Output Formats
EM CLI has three preconfigured output formats for query results. User-defined formats are also supported.

•	 Pretty format aligns the column headings with the result-set data.

•	 Script format separates the values in the heading and results columns with a space. This
format works very well with the awk programming language.

•	 Csv format, as the name suggest, separates the values with a comma for parsing in a
spreadsheet or with the shell’s cut command.

Let’s say you want to set the OEM credentials for the eamz database using this command:

emcli set_credential -target_type=oracle_database -target_name="eamz" \
 -credential_set=DBCredsNormal \
 -columns="username:dbsnmp;password:Super_S3cret;role:Normal"

Your command would fail because OEM can’t find a matching target name. Figure 4-1 illustrates the different styles.

emcli get_targets -targets="oracle_database" -format="name:csv" | grep -i eamz

Chapter 4 ■ Working at the Command Line

48

We’ll explore several examples of applying this verb later in this chapter as well as in the next.

Agent Administration
The ability to install the EM CLI client on your desktop allows you to execute an EM CLI command without opening
a browser—no need to use the console or log into the management server host. This flexibility allows you to quickly
control the OEM agents using one of the many EM CLI verbs related to them.

As we saw earlier, you can use the get_targets verb to find the specific name of any agent by filtering
the get_targets results for target type oracle_emd. This is particularly important for agents, since the agent name
contains the host name and port number.

> emcli get_targets –targets="oracle_emd" –name="name:csv"
Status ID,Status,Target Type,Target Name
1,Up,oracle_emd,acme_dev:2480
1,Up,oracle_emd,acme_qa:3872
1,Up,oracle_emd,acme_prod:3872

The targets variable also accepts paired values that include the target name and target type, like this:
–targets=“acme_qa:oracle_database”

All of the agent-management tasks available through the OEM console are also available as EM CLI verbs.
Notice in these examples that the password is required for the OEM agent binary owner/host user in every case.

Figure 4-1. Output style samples

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Working at the Command Line

49

emcli stop_agent -agent=acme_qa:3872 -host_username=oracle
Host User password:
The Shut Down operation is in progress for the Agent: acme_qa:3872
The Agent "acme_qa:3872" has been stopped successfully.

emcli start_agent -agent=acme_qa:3872 -host_username=oracle
Host User password:
The Start Up operation is in progress for the Agent: acme_qa:3872
The Agent "acme_qa:3872" has been started successfully.

emcli restart_agent -agent=acme_qa:3872 -host_username=oracle
Host User password:
The Restart operation is in progress for the Agent: acme_qa:3872
The Agent "acme_qa:3872" has been restarted successfully.

Agents sometimes fall out of sync with the OMS after patching or as a result of an outage and thus require an
update to their registration information or even an agent synchronization in order to permit uploads. The easiest way
to achieve this is to resecure the agent to straighten out the connection. If your environment does not require secured
agents, you can remove the secure relationship by executing the unsecure_agent verb with identical syntax to the
secure_agent verb.

Notice that the password for the owner of the agent executable and the OMS registration password are
both required.

emcli secure_agent -agent=acme_qa:3872 -host_username=oracle
Host User password:
Registration Password:
The Secure operation is in progress for the Agent: acme_qa:3872
The Agent "acme_qa:3872" has been secured successfully.

emcli resecure_agent -agent=acme_qa:3872 -host_username=oracle
Host User password:
Registration Password:
The Resecure operation is in progress for the Agent: acme_qa:3872
The Agent "acme_qa:3872" has been resecured successfully.

The agent_resync verb kicks off a job in the repository database to update the status of a blocked agent. An agent
is placed in blocked status when the repository contains conflicting data from the agent upload. This typically happens
after unscheduled issues affect the agent connection to the OMS. As a result, standard output isn’t informative at the
command line. While you can click through to the job in the console to track the progress, there is no matching
option in EM CLI.

emcli resyncAgent -agent=acme_qa:3872
Resync job RESYNC_20140422135854 successfully submitted

EM CLI can also be used to provide detailed information about an agent, either listing all of its properties or
drilling down to a specific property, as shown below.

Chapter 4 ■ Working at the Command Line

50

emcli get_agent_properties -agent_name=acme_qa:3872
Name Value
agentVersion 12.1.0.3.0
agentTZRegion America/Los_Angeles
emdRoot /opt/oracle/agent12c/core/12.1.0.3.0
agentStateDir /opt/oracle/agent12c/agent_inst
perlBin /opt/oracle/agent12c/core/12.1.0.3.0/perl/bin
scriptsDir /opt/oracle/agent12c/core/12.1.0.3.0/sysman/admin/ scripts
EMD_URL https://acme_qa:3872/emd/main/
REPOSITORY_URL https://myoms.com:4903/empbs/upload
EMAGENT_PERL_TRACE_LEVEL INFO
UploadInterval 15
Total Properties : 10

emcli get_agent_property -agent_name=acme_qa:3872 -name=agentTZRegion
Property Name: agentTZRegion
Property Value: America/Los_Angeles

Deleting EM Targets with EM CLI
The delete_targets verb can be used to remove individual targets or a group of related targets. It may seem simpler
to select targets individually from the console and press the Delete Target button. That’s usually true, but we’ve found
that under some conditions it’s possible to end up with orphaned targets, like an oracle_dbsys target type left behind
when all its fellow members were deleted. Besides, if you have an EM CLI client installed on your desktop you can
remove the target without logging into the console!

Let’s first look at an example of removing an individual target. Let’s say that database bertha was finally retired,
and so was the related listener LSNRBERTHA. Both of them belong to an oracle_dbsys target type.1

Find Exact Target Names
The console derives target names and target types from session information, so target deletion within the console is
sure to use the exact name and target type for both of these targets. To find those values, we’ll use the get_targets
verb and a simple grep to distinguish the targets we’re interested in.

> emcli get_targets | grep -i bertha
1 Up oracle_database bertha
1 Up oracle_dbsys bertha_sys
1 Up oracle_listener LSNRBERTHA_oemdemo.com

Delete the Target
The database and listener both belong to the database system bertha_sys, so all three can be deleted with one command:

> emcli delete_target –type = "oracle_db_sys" –name="bertha_sys" –delete_members
 Target "bertha_sys:oracle_dbsys" deleted successfully

1There are several target types in your environment. During its installation, the EM agent discovers the targets on the host and
associates them with specific target types. A new Oracle Home is created and the appropriate plug-in is installed for each target type
identified. The labels of each target type are fixed, and each target is associated with one and only one target type.

https://acme_qa:3872/emd/main/
https://myoms.com:4903/empbs/upload

Chapter 4 ■ Working at the Command Line

51

You can also delete individual members, like this:

> emcli delete_target –type = "oracle_listener" –name="LSNRBERTHA"
 Target "LSNRBERTHA:oracle_listener" deleted successfully

How to Remove an Enterprise Manager Agent with One Command
Removing an EM agent from Enterprise Manager requires removal of all the targets managed by that agent and all of
their metrics. In the console, this requires multiple deletion actions in roughly reverse order of their discovery.
For instance, when you first deploy an agent to a host, the agent and host become the first and second targets known.
Then you discover and promote other targets residing on the host.

Monitored targets are removed in the reverse order of discovery so that referential data can be removed properly
from the repository database. Target removal must start with the discovered/promoted targets, then the host, and
finally the agent.

The delete_targets verb removes the agent and its monitored targets in just one command if you use the
delete_monitored_targets flag.

> emcli delete_target -name="<Agent Name>"
 -type="oracle_emd"
 -delete_monitored_targets
 -async;

Note ■ the agent must be stopped prior to deletion.

The process for deleting the agent target type is very similar to that for removing other target types. Since agent
names consist of the host name and agent port number, we’ll run get_targets first.

> emcli get_targets | grep -i demohost01
1 Up host demohost01
1 Up oracle_emd demohost01:3872

> emcli delete_target -name="demohost01:3872" -type="oracle_emd" -delete_monitored_targets -async;
Target "LSNRBERTHA:oracle_listener" deleted successfully

Complete removal of the agent involves activities on the management server (OMS) as well as work on the
remote host. See Table 4-1.

Chapter 4 ■ Working at the Command Line

52

Transferring Targets to Another EM Agent
Changes happen. Perhaps you’ve decided to move a database to a different host or you want to change the directory
containing your EM agent binaries. You could drop and rediscover the targets, but you’d lose their metric history.

You can retain that history and reassign metric collection and blackout responsibility for specific targets to
another EM agent using the relocate_targets verb.

How It Works
Each EM agent has its own targets.xml file located in $AGENT_BASE/agent_inst/sysman/emd. The relocate_targets
verb updates those XML files on the source and destination hosts and also updates the relationships in the repository.

The agent and the targets it monitors must reside on the same host. That means that you can’t use relocate_targets
to monitor databases through an agent on a different host. This technique is limited to moving targets to an EM agent
on the same host or to performing a migration task to another server. Let’s look at an example.

Table 4-1. Agent Removal Tasks

Location Action Example

Remote host Get the target name from the agent > emctl status agent | grep "<Agent URL>"

Remote host Stop the agent with emcli or emctl.
You could also use emcli stop_agent verb
described earlier in this chapter to shut it
down from a CLI session. Since the complete
agent-removal task includes
on OUI session on the remote host,
as in this case it is simpler to
execute the emctl command

> emctl stop agent

OMS Delete the target > emcli delete_target -name="<Agent Name>"

 -type="oracle_emd"

 -delete_monitored_targets

 -async;

Remote host Uninstall plugin and sbin binaries.
OUI Oracle home removal carries the same
relationships as target creation inside OEM.
The agent home was created first and must
be deleted last in a separate step.

cd $AGENT_BASE/core/<agent release>/oui/bin

./runInstaller -deinstall –remove_all_files

Remote host Uninstall the agent software with the
including_files option

Chapter 4 ■ Working at the Command Line

53

To move goldfish database and its listener from the alice server to buster:

emcli relocate_targets
 -src_agent="alice:3872"
 -dest_agent="buster:3872"
 -target_name="goldfish"
 -target_type="oracle_database"
 -copy_from_src

emcli relocate_targets
 -src_agent="alice:3872"
 -dest_agent="buster:3872"
 -target_name="lsnrgoldfish"
 -target_type="oracle_listener"

For the transfer you’d use these values:

•	 src_agent= alice:3872 (current agent name)

•	 dest_agent= buster:3872 (destination agent name)

•	 target_name= goldfish (name of the target to move)

•	 target_type= EM types for that target

Database targets also include the copy_from_src flag in order to retain their history. You can only relocate one
target per EM CLI command.

OMS-Mediated Targets
Do not use the relocate targets verb with RAC databases or Oracle clusters of any type. Your management
server knows about the relationships between clustered objects that use Oracle software and will mediate agent
responsibilities automatically across the clustered hosts. If you manually relocate a clustered target to another agent
in another cluster you run the risk of corrupting OEM’s associations between the cluster members.

You can query the repository database to determine which targets are OMS mediated as follows:

SELECT entity_type,
 entity_name,
 host_name
FROM sysman.em_manageable_entities
WHERE manage_status =2-- Managed
AND promote_status =3-- Promoted
AND monitoring_mode =1-- OMS mediated
ORDERBY entity_type,entity_name, host_name;

ENTITY_TYPE ENTITY_NAME HOST_NAME
------------------------- ------------------------------------- --------------------
cluster clust01 cluster01b.com
cluster clust01 cluster01b.com
rac_database apple cluster01b.com
rac_database betty cluster01a.com
rac_database jack cluster01b.com
weblogic_domain /EMGC_GCDomain/GCDom myoms.com
weblogic_domain /Farm01_IDMDomain/ID myoms.com
weblogic_domain /Farm02_IDMDomain/ID myoms.com

Chapter 4 ■ Working at the Command Line

54

Managing OEM Administrators
The console provides a clear, convenient method for managing OEM administrator accounts, but its flexibility makes
it tremendously inconvenient for creating multiple accounts as you click through all the screens. EM CLI combines
the flexibility inherent in the OEM codebase with the simplicity of the command-line interface.

All of the options defined in the console can be granted as options in EM CLI using the flags shown below.
To create an administrator you only need to give the account a name and password.

emcli create_user -name="SuzyQueue" -password="oracle"

You wouldn’t be reading a book from Apress if you were one to ignore user security, so you’ll want to expire the
user’s new password with the -expired="true" flag, like this:

emcli create_user -name="SuzyQueue" -password="oracle" -expired="true"

Other optional parameters allow you to perform most of the user grants available in the OEM console but without
the click-stream. Both EM CLI and the OMS server use the same codebase, so this should come as no surprise.

Role Management
Enterprise Manager administrators and users are stored as database user accounts in the repository database.
Resist the temptation to grant role privileges through SQL*Plus, since there may be other actions being performed by
OEM’s internal security management.

You can add role grants while creating the user by adding the -roles parameter:

emcli create_user -name="SuzyQueue" -password="oracle" \
 -roles="em_all_administrator"

You can also modify the user through the grant_roles or revoke_roles verbs:

emcli grant_roles -name="SuzyQueue" -roles="em_all_viewer"

emcli revoke_roles -name="SuzyQueue" -roles="em_all_operator"

We’ll discover how to build out a set of administrators using shell scripts in the next chapter.

Tracking Management Server Login
Occasionally you may want to know who is logged in to your management servers. The list_active_sessions verb
provides that information with details if you pass the –details flag, like this:

emcli list_active_sessions -details

OMS Name: myoms.com:4889_Management_Service
Administrator: SYSMAN
Logged in from: Browser@123.45.6.234
Session: F7CA6D7DE88B0917E04312E7510A9E54
Login Time: 2014-04-24 06:46:53.876687

Chapter 4 ■ Working at the Command Line

55

OMS Name: myoms.com:4889_Management_Service
Administrator: BOBBY
Logged in from: Browser@SAMPLEPC.com
Session: F7CD5C7EE0A961C7E04312E7510A8A71
Login Time: 2014-04-24 11:05:24.199258

OMS Name: myoms.com:4889_Management_Service
Administrator: PHIL
Logged in from: Browser@123.45.6.228
Session: F7CECDD6335543E3E04312E7510AA25C
Login Time: 2014-04-24 11:13:20.567234

OMS Name: myoms.com:4889_Management_Service
Administrator: SYSMAN
Logged in from: Browser@123.45.6.234
Session: F7CF52CA3BE1692FE04312E7510A7494
Login Time: 2014-04-24 11:50:31.152683

OMS Name: myoms.com:4889_Management_Service
Administrator: SYSMAN
Logged in from: EMCLI@123.45.6.231
Session: F7CF52CA3BE3692FE04312E7510A7494
Login Time: 2014-04-24 11:55:52.482938

OMS Name: myoms.com:4889_Management_Service
Administrator: SYSMAN
Logged in from: Browser@123.45.6.231
Session: F7CF52CA3BE5692FE04312E7510A7494
Login Time: 2014-04-24 12:07:52.335728

Summary
EM CLI allows you to perform many administrative tasks from the command line and even on your desktop.
The simple techniques described in this chapter lend themselves handily to shell scripting and further automation,
as described in the following chapter.

57

Chapter 5

Automation Through Shell Scripts

As we discovered in the previous chapter, EM CLI provides faster means of accomplishing complicated tasks that are
ordinarily managed through the OEM console. The strength of EM CLI is leveraged by combining EM CLI with classic
shell-scripting techniques. The examples in this chapter are written for use in a Unix/Linux environment but, because
EM CLI is a Java application, the CLI syntax shown here will work just as well in other environments.

This chapter begins with CLI scripting fundamentals and then works through several examples demonstrating
application of the technique. In each example, we’ve removed the common housekeeping commands that make
scripts robust in order to ensure our illustrations are clear. Since those techniques apply to any scripted solution,
we’ll lay out some fundamental scripting guidelines before tackling any OEM solutions.

All the examples in this chapter are written using fundamental bash shell scripts due to their ubiquity and clarity.
Perl or other languages can be applied to improve script performance, but adding that element to this chapter could
mask the basics of the techniques being demonstrated.

This chapter begins by laying out some shell-scripting fundamentals and advances to building and applying shell
functions. Along the way we’ll take a look at how to create and control OEM blackouts, manage user accounts, and
work with larger data sets. Finally, we’ll take a look at some advanced shell-scripting techniques using getopts.

Best Practices for Shell Scripting
Everyone with experience in shell scripting, whether for Windows, Linux, or any other Unix variant, has their own
preferred techniques. Hopefully, the scripts in your environment present a consistent look and feel that makes it easy
to read and easy to maintain. Best practices for writing any program, regardless of shell or operating system, were laid
out by the creators of Unix and documented in The Art of Unix Programming by Eric S. Raymond. Those guidelines
provide a very clear foundation for any programming we perform. A free online copy of the book is available at
https://archive.org/details/ost-computer-science-the_art_of_unix_programming.

Logging
Mysteries belong on your night stand and not in your Enterprise Manager environment. Output for any Unix program
should provide useful, complete, and concise screen output at run-time along with thorough log files. Log files are
created through the redirection of the shell output.

https://archive.org/details/ost-computer-science-the_art_of_unix_programming

Chapter 5 ■ automation through Shell SCriptS

58

Redirection
Echo statements direct their standard output to the screen. This type of output was one of the earliest capabilities for
the Unix operating system and makes log-file creation a simple extension of the scripts. One can redirect output using
either one or two elbows (also referred to as chevrons or angle brackets), typically pointed to the right. A simple echo
statement sends standard output to the screen.

echo "Hello world"
Hello world

You can redirect that same output directly to a file with a right elbow:

echo "Hello world"> myFile.lst

cat myFile.lst
Hello world

Single right elbows create a new file, while double right elbows append output to a file.

echo "Shell scripting makes me hungry">> myFile.lst
echo "What about you?">> myFile.lst

cat myFile.lst
Hello world
Shell scripting makes me hungry
What about you?

Robust shell scripts are written both for unattended scheduled activities (cron, for instance) and for interactive
execution for debugging and one-off use. “Piping to a tee” allows immediate feedback at the console and also writes
standard output to a file, like this:

echo "Hello world"| tee myFile.lst
Hello world

cat myFile.lst
Hello world

Append to files by tacking -a onto your tee statement:

echo "Shell scripting makes me hungry"| tee -a myFile.lst
echo "What about you?"| tee -a myFile.lst

Error Handling
Even the simplest Unix program expects that your program will make the machine do the work. Poorly written scripts
make assumptions based on, and perhaps tested against, existing installations and configurations. As you well know,
nothing stays the same in our business, so program for the unexpected.

Chapter 5 ■ automation through Shell SCriptS

59

Nothing is as frustrating as a program that fails-out when it discovers a problem that it could easily be handled by
the script. For instance, if your script requires a specific directory for logs or staging then the script should create those
directories and set the proper permissions required by your program:

if [! -d /tmp/staging]; then
 mkdir -p /tmp/staging
 chmod 770 /tmp/staging
fi

Hung program execution is another area in which your program should anticipate failures and test for problem
situations before they happen. For example, empty files can cause your script to hang, so before grepping file output,
you should check to see that the file truly exists:

if [-f myFile.lst]; then
 cat myFile.lst | grep "Hello World"
else
 echo "File myFile.lst is missing!"
 exit 1
fi

There are several other relevant scripting guidelines in The Art of Unix Programming. The examples we just
considered are representative of the types of programming fundamentals omitted from this chapter in the interest of
brevity and clarity.

Passwords and Shell Scripts
Among all the guidelines and suggestions for shell programming there has always been one hard and fast rule:
Never hard-code passwords into your scripts—it can become a maintenance and security nightmare. It is up to you
to develop a method for managing your password files. The choice is yours whether you develop an in-house Java
solution, apply a technique you found on the web, depend on obfuscation and hidden files, or use some other bit of
cleverness. It is beyond the scope of this book to suggest solutions.

The remainder of this chapter will use the variable named ${SECRET_PASSWORD} whenever a password is required
in the script.

Calling EM CLI from a Shell Script
Command-line utilities like SQL*Plus run in a subshell inside of shell scripts, wrapped in “Here Documents” that are
typically shown as opening and closing EOF tags, like this example shows:

sqlplus / as sysdba <<EOF
 SELECT sysdate FROM dual;
 exit
EOF

SYSDATE

03-AUG-14

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ automation through Shell SCriptS

60

You can find more information about this process at http://www.tldp.org/LDP/abs/html/here-docs.html
Each EM CLI command runs on a stand-alone statement, so a subshell is not required when called by your shell

script. In its place, you should use shell script functions when a series of related CLI commands needs to be executed
together.

Shell Script Functions
Shell function syntax is quite simple. Just follow these steps:

 1. Using the keyword function, give the function a name followed by an opening brace.
Braces are the curly brackets { }, and brackets are these angular objects: [].

 2. Include the shell commands to be executed.

 3. Add a closing brace.

In the following example, the contents of several directories are copied to a backup destination. The code for creating
the file list and the actions required to move the files could be repeated for each directory. Instead, the recurring tasks
are performed by the same block of code, which is called by the function name CopyFiles. Common supplemental
tasks, such as compressing and chmodding the files, can be added so as to function for single-source editing.

Variables, such as SOURCE_DIR, TARGET_DIR, and WORKFILE, are passed to the function at run-time. Dependent
variables, such as SOURCE_FILE and TARGET_FILE, are populated at run-time for each directory:

--
Functions
--
function CopyFiles {
cd $SOURCE_DIR

ls -l | grep -i $ORACLE_SID >$WORKFILE

for thisFILE in `cat $WORKFILE`; do
 SOURCE_FILE=$SOURCE_DIR/$thisFILE
 TARGET_FILE=$TARGET_DIR/$thisFILE
 cp -f $SOURCE_FILE $TARGET_FILE
done

rm -f $WORKFILE
}

--
Run-time Procedure
--
SOURCE_DIR=/gold_scripts/rman
TARGET_DIR=/test_scripts/rman
 CopyFiles

SOURCE_DIR=/gold_scripts/security
TARGET_DIR=/test_scripts/security
 CopyFiles

http://www.tldp.org/LDP/abs/html/here-docs.html

Chapter 5 ■ automation through Shell SCriptS

61

As we saw in the last chapter, each EM CLI session begins with two commands—login and sync. This same
practice should be followed when starting a session in a script. You could repeat the same sequence each time your
script starts a CLI session, like this:

emcli login -username="SYSMAN"-password=${
emcli sync

Since these two commands always execute together, they form the basis for a simple shell script function, seen
below. We’ll look at some more-complex functions later in the chapter.

function EmcliLogin {
 emcli login -username="SYSMAN" -password="${SECRET_PASSWORD}"
 emcli sync
}

GetTargetName Function
In the previous chapter we explained how the get_targets verb can be used to determine the exact name of an OEM
target. Since shell scripts are built to handle edge cases, like missing directories, any target-manipulation script should
verify the following:

 1. The target exists in OEM.

 2. You use the exact name of the target in your CLI command.

Build the get_targets verb into a function by giving it a name and wrapping the commands in braces. In this
example the value for INPUT_VAL is passed into the function by the calling script:

function GetTargetName {
if [`emcli get_targets | grep ${INPUT_VAL}%"| grep oracle_database" | wc -l` -gt 0];
then
 thisTARGET=`emcli get_targets –format –name="name:csv"| grep -i ${INPUT_VAL} | grep
oracle_database | cut -d, -f4`
 echo "Target name is ${thisTARGET}"
else
 echo "No matching targets found"
fi
}

In this example, we set a variable named thisTARGET for the exact target name known to OEM for the Oracle
database acme_qa. At run-time, the target name will be passed from the command line or through additional scripting
(working through a list of targets, for instance). The steps outlined here are explained in detail later.

 1. Determine first whether a matching target exists.

 2. If it does exist, set the variable thisTARGET to match and announce your success. Logging
and interactive user communication are essential to troubleshooting shell scripts. Share
the status whenever new information is available at run-time.

 3. If it does not exist, fail loudly and politely. One of the core Unix programming rules is
that programs should fail as early as possible and loudly as possible. Shell scripts are no
exception.

Chapter 5 ■ automation through Shell SCriptS

62

Filtering and parsing to determine the final variable string runs through this sequence:

 1. Get a list of all targets of a type with oracle% in the name.

 2. Grep that list for targets matching acme_qa.

 3. Grep that shorter list for oracle_databases.

 4. Cut the list by delimiting on the comma and returning the fourth value.

Step 1: List of all targets with “oracle%” in their name

Status ID,Status,Target Type,Target Name
1,Up,oracle_emd,acme_dev:3872
1,Up,oracle_emd,acme_qa:2480
1,Up,oracle_emd,acme_prod:3872
1,Up,oracle_database,amce_dev
1,Up,oracle_database,acme_qa
1,Up,oracle_database,acme_prod
1,Up,oracle_listener,lsnracmedev
1,Up,oracle_listener,lsnracmeqa
1,Up,oracle_listener,lsnracmeprod

Step 2: Filter that list for strings containing acme_qa

1,Up,oracle_database,acme_qa
1,Up,oracle_listener,lsnracmeqa

Step 3: Just list the database

1,Up,oracle_database,acme_qa

Step 4: Return the fourth string after a comma delimiter

acme_qa

Be sure to call the function by name during script execution:

read INPUT_VAL?"Enter the database to be managed:"
GetTargetName

Managing Blackouts with EM CLI
The most common use of Enterprise Manager is to send notifications for target down events or metrics that fall
outside limits you’ve set. You control those alerts during planned outages by creating blackouts for individual targets
or groups of targets. There are a number of settings required to create a blackout, and the EM console provides a
handy, attractive means to do it.

EM CLI provides a means of creating, stopping, and deleting blackouts inside your shell scripts. All of the same
options found in the console are configurable through EM CLI, since it exercises the same Java code behind the scenes.

Chapter 5 ■ automation through Shell SCriptS

63

You must provide three values for the EM CLIcreate_blackout verb.

Unique name for each blackout passed as •	 -name

Targets to include in the blackout, used in •	 -add_targets argument

Schedule information about start and end times,input as •	 -schedule argument

The-reason variableis not required by EM CLI but should be included to make it easier for OEM administrators
to assess running, scheduled, and stopped blackouts. Be courteous.

The syntax to create a simple blackout is fairly straightforward:

> emcli create blackout -name="sample_blackout"\
-add_targets="oracla:oracle_database"\
-schedule="duration::360 ..."
-reason="Blackout demonstration using emcli"

Name Argument
You may pass anything as the name of a blackout. The blackout name is applied when you create the blackout, but
it’s also used when it’s time to stop and delete the blackout. It’s always a good practice to use a descriptive name like
scripted_blackout_$SID or a similar, consistent naming standard. As we work through the examples, you’ll begin to
see how consistency affects your solution’s design.

Add Targets Argument
Targets must be identified by target name and target type. For example:

oracla:oracle_database•	

demohost:host•	

lsnroracla:oracle_listener•	

Schedule Argument
Each schedule argument accepts two required and several optional values at the command line, similar to the
flexibility found in the console:

 frequency:once

requires => duration or end_time
optional => start_time, tzinfo, tzoffset

 frequency:interval

requires => duration, repeat

 optional => start_time, end_time, tzinfo, tzoffset

frequency:weekly
requires => duration, days
optional => start_time, end_time, tzinfo, tzoffset
frequency:monthly
requires => duration, days
optional => start_time, end_time, tzinfo, tzoffset

Chapter 5 ■ automation through Shell SCriptS

64

frequency:yearly
requires => duration, days, months
optional => start_time, end_time, tzinfo, tzoffset

A Robust Solution for Scheduled Blackouts
The author’s environment contains a handful of application training databases that get refreshed from a cold backup
nightly. Of course, as soon as these targets were added to OEM he started getting pager notifications at night caused
by these planned outages. You can imagine his reaction.

The simplest solution is to blackout these targets all night on a schedule in the console. •	

What if you need to run this refresh during the day?•	

Do you really want these targets to be unmonitored overnight?•	

What if the refresh failed? Trainers are not typically patient customers, particularly with a •	
roomful of idle trainees waiting for their lab.

Here’s a solution that involves shell functions, EM CLI, and their related run-time scripts. We’ll start by taking
a look at how the process would typically be done without shell functions, and then we will convert the script into
portable, scalable functions.

Create and Stop Blackouts Using Shell Scripts
Blackouts can be created through a series of CLI verbs to perform the following steps to test, execute, and then verify
the blackout status.

 1. Determine whether the target is already under blackout.

 2. If a blackout already exists, stop and delete it (to get the full duration of your new
blackout).

 3. Create and start a new blackout.

 4. Verify that the blackout is started by echoing its values to the screen and also to the log file.

These steps are illustrated in this simplified script. Your real script would test whether the database name
was passed as the $1 value at the command line and would then prompt or fail based on run-time conditions. For
instance, if the script is being executed by a live user, it should prompt for the database name, otherwise it will fail and
echo the cause to the logfile.

#!/bin/ti
===
File: create_blackout.sh
Purpose: Create and initiate an OEM blackout
Parameters: Blackout name as BO_NAME
===
export BO_NAME=${1}_scripted_blackout

echo "\n\nCreating blackout named '${BO_NAME}' ...\n"

Chapter 5 ■ automation through Shell SCriptS

65

if [`emcli get_blackouts | grep ${BO_NAME} | wc -l` -gt 0]; then
 $ECHO "\n\nFound an existing blackout named ${BO_NAME}"
 $ECHO "That blackout will be stopped and deleted prior to starting the new one\n\n"
 emcli stop_blackout -name="${BO_NAME}"
 emcli delete_blackout -name="${BO_NAME}"
fi

emcli create_blackout
-name="${BO_NAME}"
 -add_targets="${thisTARGET}:oracle_database"
-schedule="duration::360"
-reason="Scripted blackout for maintenance or refresh"

sleep 5

echo "\n\nGetting blackout information for '${BO_NAME}' ...\n\n"
emcli get_blackout_details -name="${BO_NAME}"

There are several things to notice in this short script:

Each blackout name must be unique, so this script requires some portion of the name to be •	
passed at the command line. In this example we pass the SID.

User communication is important anytime, so be complete and be concise. Your echo’s •	
statements are useful at run-time and essential in the log file.

This planned blackout will run six hours (•	 duration:360) maximum, so you want to delete an
existing blackout of the same name to get all six hours.

Notice that the •	 stop_blackout and delete_blackout verbs take the blackout name as their
only input value. You must stop a blackout before you can delete it.

The test for blackout status is important for the run-time log file.•	

In practice, this appears as a series of wrap-around entries in the crontab, like this:

25 19 * * * /scripts/oem/create_blackout.sh gold
30 19 * * * /scripts/refresh/restore_training.sh gold
30 20 * * * /scripts/oem/end_blackout.sh gold

When you start a blackout you should also plan on stopping it. This side of the scripted pair is simpler, of course,
because there is a lot less to do:

#!/bin/sh
===
File: end_blackout.sh
Purpose: End an OEM blackout
Parameters: Blackout name as BO_NAME
===
export BO_NAME=${1}_scripted_blackout
echo "\n\nStopping blackout named '${BO_NAME}' ...\n"
if [`emcli get_blackouts | grep ${BO_NAME} | wc -l` -gt 0]; then
 $ECHO "\n\nFound an existing blackout named ${BO_NAME}"
 emcli stop_blackout -name="${BO_NAME}"
 emcli delete_blackout -name="${BO_NAME}"
fi

Chapter 5 ■ automation through Shell SCriptS

66

Creating and Using a Function Library
The previous example assumes that everything goes well with the refresh and that OEM resumes monitoring after
an hour. Of course, the blackout will end six hours after it starts, even without end_blackout.sh. Why not turn off the
blackout right after the work is done?

Converting this activity to shell functions in a central library allows you to start and stop the blackout inside the
restore_training.sh script, as shown here:

#!/bin/sh
===
File: restore_training.sh
Purpose: Refresh database from a cold backup copy of datafiles
Parameters: Database name as ORASID
===
Source the OEM function library
. /script/oem/emcli_functions.lib

export BO_NAME=database_refresh_${ORASID}

CreateBlackout

< Existing your in-house database restoration commands >

EndBlackout

Only one cron entry (or OEM scheduled job) is required because you’ve wrapped the work of all three scripts into
one wrapper.

The function library sourced in this example contains the functions CreateBlackout and EndBlackout. The
function library is simply a non-executable text file stored in a central location on each server, preferably through NFS
mounts or a similar shared file system.

This snippet only contains the two functions relevant to this example. Chapter 8 contains an example of a
complete function library. Your production CLI function library can contain many others, in addition to these two.
Notice that the contents of the functions are identical to the code we used in the separate shell scripts. They’re just
recorded as functions.

===
File: emcli_functions.lib
Purpose: Shared function library for EM CLI scripts
Note : Source this library to load its contents into memory
===
function CreateBlackout {
echo "\n\nCreating blackout named '${BO_NAME}' ...\n"

if [`emcli get_blackouts | grep ${BO_NAME} | wc -l` -gt 0]; then
echo "\n\nFound an existing blackout named ${BO_NAME}"
 echo "That blackout will be stopped and deleted prior to starting the new one\n\n"
 emcli stop_blackout -name="${BO_NAME}"
 emcli delete_blackout -name="${BO_NAME}"
fi

Chapter 5 ■ automation through Shell SCriptS

67

emcli create_blackout -name="${BO_NAME}"
 -add_targets=${thisTARGET}:oracle_database
 -schedule="duration::360;tzinfo:specified;tzregion:America/Los_Angeles"
 -reason="Scripted blackout for maintenance or refresh"
}

function EndBlackout {

echo "\n\nStopping blackout '${BO_NAME}' ...\n"
emcli stop_blackout -name="${BO_NAME}"

echo "\n\nDeleting blackout '${BO_NAME}' ...\n"
emcli delete_blackout -name="${BO_NAME}"
}

Once the library is created, you’re free to leverage these same functions across all of your scripts, even at the
command line. For instance, let’s say you need to blackout the databases on a particular server for operating system
patches. At the command, you’d source the function library and then call the functions as needed. Files are sourced
by typing a period, a space, and then the file name. For instance, when you log into a Unix/Linux server, your user
profile will source the .bashrc and .bash_profile (if Bash is your shell of choice) to load your environment variables
into memory. When you type the env command, it will reflect those values. Sourcing other files, like a function library,
loads paths, values, functions, or aliases from the new file into memory to supplement or replace the environment
variables already in place:

. /script/oem/emcli_functions.lib
for thisSID in suzie, sally, betty, veronica; do
 BO_NAME=os_patch_blackout_${thisSID}
 echo "Starting the blackout for ${thisSID}"
 CreateBlackout ${BO_NAME}
done

You’d reverse this using a similar process when the work is done:

. /script/oem/emcli_functions.lib
for thisSID in suzie, sally, betty, veronica; do
 BO_NAME=os_patch_blackout_${thisSID}
 EndBlackout ${BO_NAME}
done

In addition to the simplicity of your run-time environment, either at the command line or in a script, you can
be assured that the code in the function library has been tested in other use cases. The function library also removes
opportunities for mistyped commands and forgotten steps.

Chapter 5 ■ automation through Shell SCriptS

68

EMCTL or EMCLI
Enterprise Manager control utility, or EMCTL, is installed with each OEM agent and is used to manually start and stop
OEM agents and to manage local functionality at the remote host.

EMCTL can be used to start and stop (but not delete) OEM blackouts just like EM CLI, but with one key
advantage: EMCTL is already installed and configured. If you choose EM CLI as your blackout-management tool for a
remote host using shell scripts, you must manually install and configure the EM CLI client on each host. EM CLI client
is a static installation of a Java program. The client software installations are reported but not managed through OEM
itself. The number of remote hosts in your environment might make EMCTL the better solution if you are limiting the
functionality to blackout maintenance and other tasks that it can manage. The installation process covered in Chapter 2
provides a scripted means of performing that installation.

Managing blackouts with EMCTL is very similar to the techniques used for EM CLI and lends itself to the same
scripting applications.

The syntax is straightforward:

emctl start blackout <blackout name><target names>
emctl start blackout <blackout name> -nodelevel
emctl stop blackout <blackout name>
emctl status blackout <blackout name>

The nodelevel flag blacks out all targets on the node and works well for patching activities.
Durations are specified by a –d flag and may be set for a combination of days and hours like this:

emctl start blackout WeekendBlackout -nodelevel –d 2 12:00

In this example, a blackout for all targets on a development node could be scheduled to start at 6:00 PM on a
Friday and would run up to 6:00 AM on Monday (two days and twelve hours).

Managing OEM Administrators with EM CLI
The console provides a clear, convenient method for managing OEM administrator accounts, but its flexibility makes
it tremendously inconvenient for creating multiple accounts as you click through all the screens. By the author’s
count, creating a new administrator in the console requires at least 17 mouse clicks! EM CLI combines the flexibility
inherent in the OEM code base with the simplicity of the command-line interface.

All of the options defined in the console can be granted as options in EM CLI using the flags shown below. To
create an administrator you only need to give the account a name and password:

emcli create_user -name="SuzyQueue"-password="oracle"

You wouldn’t be reading a book from Apress if you ignored user security, so you’ll want to expire the user’s new
password with the -expired="true" flag, like this:

emcli create_user \
 -name="SuzyQueue"\
 -password="oracle"\
 -expired="true"

The other optional parameters allow you to perform the user grants available in the OEM console but without the
click-stream.

Chapter 5 ■ automation through Shell SCriptS

69

Role Management
Enterprise Manager administrators and users are actually database user accounts in the repository database. Resist
the temptation to grant role privileges through SQL*Plus, since there may be other actions performed by OEM in
account management.

You can add role grants while creating the user by adding the -rolesparameter:

emcli create_user \
 -name="SuzyQueue"\
 -password="oracle"\
 -roles="em_all_administrator"

You can also modify the user through the grant_roles or revoke_roles verbs:

emcli grant_roles \
 -name="SuzyQueue"\
-roles="em_all_viewer"

emcli revoke_roles \
 -name="SuzyQueue"\
 -roles="em_all_operator"

Batch Processing with Argfile
EM CLI has a batch-processing verb named argfile that, like many other Oracle parfiles, allows you to execute
multiple commands in a single EM CLI execution by providing a fully qualified path in the text file containing the
input values to be applied.

For example, let’s load up a text called /tmp/create_several_users.lst with the CLI required to
create a few users:

touch /tmp/create_several_users.lst
for thisADMIN in Sugar Magnolia Blossom Blooming, do
 echo "create_user -name=${thisADMIN} -password=oracle -expired=true";
done

cat /tmp/create_several_users.lst
create_user -name="Sugar"-password="oracle"-expired="true"
create_user -name="Magnolia"-password="oracle"-expired="true"
create_user -name="Blossom"-password="oracle"-expired="true"
create_user -name="Blooming"-password="oracle"-expired="true"

emcli login -username=SYSMAN -password="${SECRET_PASSWORD}"
emcli sync
emcli argfile "/tmp/create_several_users.lst"

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ automation through Shell SCriptS

70

The following are advantages of using an argfile:

The EM CLI utility is invoked outside the argfile, so verbs are processed serially without •	
restarting EM CLI.

An argfile is a text file, and your choice of suffix has no bearing at all on execution. The •	
example has an lst suffix but you could just as easily use cli or cmd.

You must fully qualify the path to the argfile.•	

This example does not include file cleanup, but I’m sure your script will.•	

As you might suspect, this method is quite efficient, and argfile executions typically run very fast since there is a
single call to the OMS through the CLI utility.

Populating an Argfile from a Text File
Creating and editing an argfile by hand isn’t out of the question, but sometimes (always?) a scripted solution is easier
and less error prone. For instance, what if you received a request to provide OEM access to several members of an
application group with the following CSV file attached?

Note ■ Backslashes are included for clarity in this illustration. put each complete string on one line.

cat manage_request.txt
login,name,department,email e123450,"Jerry",A100,jerry@samplecorp.com
e123451,"Bobby",A100,bobby@samplecorp.dom
e123452,"Phil",A100,phil@samplecorp.dom
e123449,"Robert",A100,roberth@samplecorp.dom
e123499,"Ron",A100,ronpig@samplecorp.dom
e123460,"Bill",A110,bill@samplecorp.dom
e123461,"Mickey",A110,mickey@samplecorp.dom
e123491,"Keith",A120,keith@samplecorp.dom
e123492,"Donna",A120,donnaj@samplecorp.dom
e123460,"Brent",A120,brent@samplecorp.dom

We’ll redirect output from a loop statement to create the argfile, like this:

touch /tmp/user_builder_argfile.lst

for thisENTRY in `cat manage_request.txt`; do
 LOGIN=`echo ${thisENTRY} | cut -d, -f1`
 NAME=`echo ${thisENTRY} | cut -d, -f2`
 DEPT=`echo ${thisENTRY} | cut -d, -f3`
 EMAIL=`echo ${thisENTRY} | cut -d, -f4`
echo "delete_user -name=${NAME} \n >>/tmp/user_builder_argfile.lst
echo "create_user -name=${NAME} \
\t -password=oracle -expired=true \
 \t -desc=${NAME} \
 \t -department=${DEPT} \
 \t -email=${EMAIL} \
 \t -roles="EM_USER \n"

Chapter 5 ■ automation through Shell SCriptS

71

>>/tmp/user_builder_argfile.lst
done
echo "\n\nArgfile has been created\n"
cat /tmp/user_builder_argfile.lst

We end up with an argfile that looks like this:

delete_user -name=e123450
create_user -name=e123450 -password=oracle -expired=true \
-desc=Jerry -department=A100 -email=jerry@samplecorp.com-roles=EM_USER
delete_user -name=e123451
create_user -name=e123451 -password=oracle -expired=true \
-desc=Bobby -department=A100 -email=bobby@samplecorp.com-roles=EM_USER
. . .

At run-time we’ll see this:

>emcli argfile /tmp/user_builder_argfile.lst
>User "e123450"deleted successfully
>User "e123450"created successfully
>User "e123451"deleted successfully
>User "e123451"created successfully
...

It’s fast and efficient because all of the commands are issued to the OMS in one CLI session, reducing the
overhead of sending each command to the OMS for processing as a separate transaction.

Cloning OEM Roles and Users Between OMS Instances
Sandbox OEM servers are part of a well-designed OEM environment, but copying EM security data from one
repository to another can be difficult without EM CLI. This example combines SQL*Plus and EM CLI to gather data
from the existing environment and then reproduce it in the sandbox quickly and completely.

First, we’ll create three spool files from queries against the SYSMAN schema in the existing OEM repository
database. Those spool files will become the EM CLI argfiles we’ll use to build the roles, users, and grants.

The SYSMAN schema in the repository database contains all the information gathered or set by OEM. When
the EM agents upload their latest metrics to the management server, the values are posted to tables in the SYSMAN
schema. Whenever you request a page in the console it is populated from data in SYSMAN.

#!/bin/bash# ===
File: clone_em_users.sh
Purpose: Copy OEM roles and user account between instances
Parameters : None
===
ARGFILE01=/tmp/argfile_create_roles.txt
ARGFILE02=/tmp/argfile_create_users.txt
ARGFILE03=/tmp/argfile_grant_roles.txt

Chapter 5 ■ automation through Shell SCriptS

72

sqlplus -S ${SYSMAN_CONNECT} <<EOF 1>/dev/null
SET ECHO OFF
SET FEEDBACK OFF HEADING OFF LINES 250 PAGES 999

SPOOL ${ARGFILE01}

SELECT 'create_role -name="' || role_name || '" -description="' || description || '"'
FROM sysman.gc_roles
WHERE role_type= '1';

SPOOL OFF

SPOOL ${ARGFILE02}

SELECT 'create_user -name="' || user_name || '" -description="' || user_description ||
'" -password='||oracle||
" -expired="||true||'"'
FROM sysman.gc_users
WHERE user_name NOT IN ('SYSMAN')
ORDER BY user_name;

SPOOL OFF

SPOOL ${ARGFILE03}

SELECT 'grant_roles -name="' || user_name || '" -roles="' || role_name || '"'
FROM sysman.gc_user_roles;

SPOOL OFF
exit
EOF

emcli login -user=sysman -pass=${CONSOLE_PWD}
emcli -argfile ${ARGFILE01}
emcli -argfile ${ARGFILE02}
emcli -argfile ${ARGFILE03}

Changing EM Administrator References
As we mentioned in the previous section, all of the information you create through OEM is stored in the repository
database. User data for OEM accounts is stored in the sysman.mgmt_created_users table. You should never directly
change data in the repository, of course, but you may use it as reference data.

Updating an individual administrator is simple and straightforward through the EM console. However, what if the
name of department changed or a group of administrators changed locations?

You could create a short script to change the references when everyone in department 200 gets assigned to
department 500 by gathering a list of employees in department 200 into a spool file and then rolling through each
line in the spool file to create modify_user statements for each one. The script consists of a combination of SQL and
EM CLI commands. Right now there are no CLI verbs to gather this information directly, so we’ll pull it from the
repository.

Chapter 5 ■ automation through Shell SCriptS

73

Many of the error-checking routines typical when prompting for user input have been removed for clarity: Did
the user provide answers? Were the department numbers entered in upper or lower case? Are they valid numbers?
Scalable and reliable scripts must always include those verifications.

#!/bin/bash
===
File: change_admin_depts.sh
Purpose: Change department number references for EM admins
Parameters: None
===
read OLD_DEPT?"Enter the old department number: "
read NEW_DEPT?"Now enter the new department number: "

sqlplus <Connect String><<EOF
SET echo OFF
SET heading OFF feedback OFF page 999
spool old_department.lst
SELECT user_name
FROM sysman.mgmt_created_users
WHERE department = '${OLD_DEPT}';
spool off
exit
EOF

touch myARGFILE.lst

for thisUSER in `cat old_department.lst`; do
 echo "modify_user -name="${thisUSER}"-department="${NEW_DEPT}">>myARGILE.lst
done

emcli argfile myARGFILE.lst

echo "\n\nDepartment settings after the change:\n"
sqlplus <Connect String><<EOF
SET echo OFF
SET heading ON pages 999
SELECT user_name,
 department
FROM sysman.mgmt_created_users
ORDER BY user_name;
exit
EOF
[old_department.lst] && rm –f old.department.lst
[myARGFILE.lst] && rm –f myARGFILE.lst

The last two steps clean up the temporary files created at run-time. Every shell script should clean up after itself.
The syntax above checks for the existence of the file and removes it when one is found. You could also build a simple
if statement if you choose.

Chapter 5 ■ automation through Shell SCriptS

74

Shell Getopts Command
In addition to getopts (plural), Linux has a getopt (singular) command. This discussion is about getopts. This is a
shell utility, not an EM CLI verb. The previous example prompted the user for two department numbers, which is fine
for interactive scripts but isn’t scalable for scheduled jobs. You could use positional parameters at the command line,
like this:

if [$1]; then
export OLD_DEPT=${1}
else
read OLD_DEPT?"Enter the old department number: "
fi

if [$2]; then
 export NEW_DEPT=${1}
else
read NEW_DEPT?"Enter the new department number: "
fi

if [[${OLD_DEPT} == ${NEW_DEPT}]]; then
 echo "The values for the old and new departments are the same"
 < Error handling >
fi

This approach relies on user inputs being presented in the correct order. In the current example, the first input
value corresponds to the old department and the second to the new department. What if they aren’t in the right order,
however? The getopts command allows you to use input flags to avoid this problem.

Command-line input is evaluated by a case statement in your script that determines how flag values are to be
handled. The order they were entered on the command line is irrelevant. OPTARG is the name of the value passed by
getopts. Let’s look at how that works. For this entry on the command line, a string will be returned via the getopts
output named OPTARG.

./change_admin_depts.sh –a 500 –b 750

while getopts a:b: OptValue; do
 case $OptValue in
 a) export OLD_DEPT=${OPTARG};;
 b) export NEW_DEPT=${OPTARG};;
 *) echo "No values were provided for old and new departments";;
 esac
done

This example tested a temporary variable named OptValue against expected characters and responded
accordingly. Each value identified as an -a or -b on the command line set corresponds to a value for a new or old
department number.

echo $OLD_DEPT
500
echo $NEW_DEPT
750

Chapter 5 ■ automation through Shell SCriptS

75

Values identified by a character followed by a colon “:” in the getopts statement indicate that the flag will be
followed by a string. An OptValue without a colon won’t accept a string and can be used to signal a particular process
in your script.

In the example below, if the -t flag is received on the command line, a function named RunTestFunctions is executed:

change_admin_depts.sh -a 747 -b 757 -t

The script handles each of these requests in order:

while getopts a:b:t OptValue; do
 case $OptValue in
 a) export OLD_DEPT=${OPTARG};;
 b) export NEW_DEPT=${OPTARG};;
 t) export TestOnly="True"
 *) echo "No values were provided for old and new departments";;
 esac
done

if [$TestOnly == True]; then
RunTestFunctions
fi

The flexibility of this approach grows with the number of values you can handle. For instance, the logic in the
ChangeAdminDepts function could be adapted to process the other values you can set with the modify_user verb, like
line of business and location. The getopts flags could be used to determine which of those functions to apply. See the
example below:

while getopts a:b:t OptValue; do
 case $OptValue in
 a) export OLD_DEPT=${OPTARG};;
 b) export NEW_DEPT=${OPTARG};;
 c) export OLD_LOB=${OPTARG};;
 d) export NEW_LOB=${OPTARG};;
 e) export OLD_LOCATION=${OPTARG};;
 f) export NEW_LOCATION=${OPTARG};;
 t) export TestOnly="True"
 *) echo "No values were provided for old and new departments";;
 esac
done

if [${#OLD_DEPT} -gt 0]; then
 if [${#NEW_DEPT} -gt 0]; then
ChangeAdminDepts
else
 echo "Error: You provided the old department but"
 echo "the value for the new department is missing."
 echo "Please run this script again and provide"
 echo "both values when prompted"
 exit 1
fi
fi

Chapter 5 ■ automation through Shell SCriptS

76

Updating Target Properties Using Argfile
OEM properties provide another data point for targets and administrators. For instance, setting the Department
property for host and database targets could be useful for filtered reports, or you could use a property to map targets
to administrators. The Lifecycle Status property can be used to filter up-time reports. You get the idea. It’s another
reference point outside of built-in OEM structures like Groups.

Despite their usefulness, it’s fairly inconvenient to set properties for an OEM target. When you discover a new
host or configure a connection to a new database, you aren’t prompted for LifeCycle Status, Department, Location,
or any of the other properties that are directly assignable to a target in the console.

As a result, some of your targets may not have current or accurate values in those fields. Here’s a query that uses
string logic to derive LifeCycle Status from the host name. In this example, production hosts are named oraprod01,
oraprod02, etc. Test and development hosts enjoy the same common naming standards. Note: Naming standards like
this flash a signal to hackers saying “Don’t waste your time on that dev/test server—all my production data is over
here!” This is just an example.

Theset_target_property_value verb allows you to set a single property for a single target. You have better
things to do, so we’ll pull those verb strings into an argfile by loading the results of that query into a SQL spool file,
like this:

sqlplus -S ${SYSMAN_CONNECT} <<EOF SET ECHO OFF
SET FEEDBACK OFF HEADING OFF LINES 250 PAGES 999
SPOOL ${ARGFILE01}
SELECT
 CASE SUBSTR (host_name, 0, 6)
 WHEN 'oraprod' THEN
 DECODE (property_value, 'Production', NULL, 'set target_property_value
-property_records="' || target_name ||':oracle_database:LifeCycle Status:Production"')
 WHEN 'oratest' THEN
 DECODE (property_value,'Test', NULL,'set_target_property_value -property_records="' ||
target_name ||':oracle_database:LifeCycle Status:Test"')
 WHEN 'oradevl' THEN
 DECODE (property_value,'Development', NULL,'set_target_property_value
-property_records="' || target_name ||':oracle_database:LifeCycle Status:Development"')
 ELSE ''Not defined'
 END AS corrective_action
FROM sysman.gc$target_properties a,
 sysman.gc$target b
WHERE a.target_guid = b.target_guid
 AND b.target_type = 'oracle_database'
 AND a.property_name = 'orcl_gtp_lifecycle_status';

SPOOL OFF
EOF

if [`cat ${ARGFILE01} | wc -l` -gt 0]; then
 emcli login -user=sysman -pass=${CONSOLE_PWD} 2>/dev/null
 emcli argfile ${ARGFILE01}
 emcli logout

fi

Chapter 5 ■ automation through Shell SCriptS

77

Summary
EM CLI supports many of the techniques available within the console and allows you to manage and manipulate
target data within portable shell scripts or OEM jobs. This chapter focused on native shell scripts, but a faster, more
flexible technique for script with jython was released with release 12.1.0.3. The following chapter shows you how to
leverage that capability.

The availability of advanced scripting with jython shouldn’t dissuade you from fundamental shell scripting. Shell
scripts run without additional installations or configurations. They also have the advantage of being familiar to nearly
all administrators.

79

Chapter 6

Advanced Scripting

Much of the power of a command-line interface like EM CLI is the ability to automate the execution of multiple
commands at a time. This chapter dives deep into the marriage of Python and EM CLI in what is known as interactive
and scripting mode.

The first part of the chapter reviews some of the history of where Python, Jython, and JSON came from. Being
able to take advantage of Python functionality in EM CLI requires a basic understanding of programming and Python
syntax. An introduction to Python in this chapter, including examples, will allow even the first-time Python user to
tackle Python efficiently in EM CLI.

Finally, a detailed example will feature the use of a Python class object to take advantage of EM CLI functionality
to modify the properties of multiple targets at a time. This is a common task that is tedious in the graphical user
interface and is necessary to understand and use in EM CLI.

History of Python
Python was created in the late 1980s by Guido van Rossum and originated from an interpreted language called ABC.
At the time, van Rossum was working with ABC and liked the syntax but wanted to change some of the functionality.
During the Christmas holidays of 1989, van Rossum designed the language that would later be called Python. Python
was officially released in 1991 while van Rossum worked for a company called Stichting Mathematisch Centrum in
Amsterdam.

Python did not get its name from the dangerous reptile, but rather from the popular British BBC comedy series,
Monty Python’s Flying Circus. Van Rossum was a fan of the show and needed a name that was fitting for the language.

Van Rossum continues to have a central role and has been named Python’s Benevolent Dictator for Life (BDFL).
This term was coined for van Rossum but has become a common description for open-source software that has
retained its creator as the final decision maker for disputes or arguments within the community.

Python is a programming language, but because the code is compiled at runtime, it can also be considered a
scripting language. There is not always a clear delineation between the two, and the definition of each has changed
over time. Generally, programming languages must be compiled before they can be run and scripts are run from a set
of commands, either interactively or from a file. Since Python can do either and both at the same time, the answer to
the question “Is Python a programming or a scripting language?” is “Yes!”

Jython
Jython is an implementation of Python written in Java. Jython was initially created in late 1997 to replace the “C”
implementation of Python with Java for performance-intensive code accessed by Python programs. Knowing how
to code in Java, while beneficial to working with Jython, is not a prerequisite. In fact, one can use Jython with no
knowledge of Java whatsoever. However, when using Jython it is likely one will come across Java code, as Jython
programs use Java classes in addition to Python modules.

Chapter 6 ■ advanCed SCripting

80

The Enterprise Manager Command-Line Interface is written almost entirely in Java and Jython. The download
of EM CLI from the OMS is a JAR file that requires the Java executable to install. When EM CLI is used in interactive
mode, the command-line interface is Jython.

The rest of this chapter will refer to Python and Jython interchangeably. This is because most users start out with
Python and subsequently learn Jython, or use only Python language (no Java) when using Jython. There is a great deal
of information and tutorials for Python on the Internet and in books, so it is advised to search “Python” instead of
“Jython” when looking up syntax, examples, and so forth.

If you’ve ever used any of Oracle’s middleware products, you have likely already come across Jython. WebLogic
Application Server's Scripting Tool (also known as “wlst”) also uses Jython.

JSON
The output of EM CLI commands will be displayed in one of two ways. The standard tabular or columnar format is
known as “text” mode. The text mode is generally the most readable form of the data up to a certain point. For example,
a table with five columns displays well in text mode, but a table made up of 20 columns is very difficult to read or parse.
Text mode is the default mode of display for EM CLI interactive mode.

An alternative to text mode for displaying command output is JavaScript Object Notation, commonly known as JSON. JSON
was originally derived from JavaScript and has since become a universal tool for data interchange. Nearly every programming
and scripting language not only uses and understands JSON, but also has a vast array of built-in functionality for it.

JSON is the default method of storing and displaying command output for the “scripting” mode of EM CLI, which
was built for processing EM CLI commands and output. It is expected that the data received from the commands
processed in an EM CLI script will be manipulated in some way.

Getting Started
Python was built for ease of use and brevity. For those reasons, it is not difficult for a novice to learn the basic
functionality of the language and to use it to accomplish tasks. DBAs often have an advantage when it comes to
learning Python because of their experience with PL/SQL, Java, shell scripting, various command-line interfaces, and
analytical tendencies.

Perhaps Python’s most noticeable feature is the use of indentation for block structure. Instead of using open and
close statements to enclose a block of flow control, such as if statements, Python uses four spaces to indent lines of
code that belong to a block. Therefore, the line above the first line not indented ends the block. The first line of the
block is always followed by a colon.

>>> for VAR in myLoop:
... do this command
>>> this line does not belong in the loop

Both Python and Jython (as well as EM CLI and WLST) have an interactive interface in which any command
executed in a script can be written or copied and executed to see the results in real time. Most Linux hosts will have
Python installed. To invoke the interactive interface, simply type python:

[root@server ~]# which python
/usr/bin/python
[root@server ~]# python
Python 2.6.6 (r266:84292, Jul 10 2013, 06:42:56)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>print("this is the interactive Python prompt")
this is the interactive Python prompt
>>>exit()

Chapter 6 ■ advanCed SCripting

81

Hello World!
“Hello World!” is the most common introduction to any programming or scripting language. The following example
uses three lines of code to demonstrate five important concepts in Python that will be used in nearly every script.
Notice the lack of extraneous text or commands in each line.

>>> myvar = 'Hello World!'
>>> if myvar:
... print(myvar)
...
Hello World!

The first line shows how to assign a value to a variable. The variable does not need to be created before
being assigned a variable. Both steps are done at once. The value assigned to myvar is a string value, making the
variable a string variable.

The second line starts an if block. The block says, “If the variable myvar exists and has a value assigned to it,
proceed to the next line in this block.” The opening line of code blocks always ends with a colon.

The third line prints the value of the myvar variable, followed by a new line. The print function always includes
a newline character at the end of the printed string.

The fourth line requires a carriage return to indicate the code block is finished. This is not the case in a script,
where blank lines after code blocks are not necessary.

The fifth line shows the output of the code-block commands. This would indicate that the myvar variable did
indeed exist and had a value assigned to it, so the line within the code block was executed, evidenced by the success
of the print function.

Finding Help
There is myriad information available on the Internet regarding Python. A simple Internet search will return more
than enough results to refresh one’s memory about a forgotten command. But, Python does one better. A full suite of
help is available right from the command line.

Basic syntax on how to use the internal help in Python can be read by calling the help() function, which puts
the user into another command-line interface within Python where almost any keyword (including “help”) found
anywhere in Python can be entered to provide easy-to-understand information:

>>> help()

Welcome to Python 2.6! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help>

http://docs.python.org/tutorial/

Chapter 6 ■ advanCed SCripting

82

For example, if I need to know something about a string, I can type string within the help> command line, and
then I can read about the many ways strings are used in Python. Perhaps a simpler way to find information is to look
up a topic by typing topics. The command prints out a list of available topics, including STRINGS. Typing STRINGS
presents an easy-to-understand article about strings in Python. Typing the letter q will exit the article, and typing
<CTRL-D> will exit the help command line:

help> topics

Here is a list of available topics. Enter any topic name to get more help.

ASSERTION DEBUGGING LITERALS SEQUENCEMETHODS2
ASSIGNMENT DELETION LOOPING SEQUENCES
ATTRIBUTEMETHODS DICTIONARIES MAPPINGMETHODS SHIFTING
ATTRIBUTES DICTIONARYLITERALS MAPPINGS SLICINGS
AUGMENTEDASSIGNMENT DYNAMICFEATURES METHODS SPECIALATTRIBUTES
BACKQUOTES ELLIPSIS MODULES SPECIALIDENTIFIERS
BASICMETHODS EXCEPTIONS NAMESPACES SPECIALMETHODS
BINARY EXECUTION NONE STRINGMETHODS
BITWISE EXPRESSIONS NUMBERMETHODS STRINGS
BOOLEAN FILES NUMBERS SUBSCRIPTS
CALLABLEMETHODS FLOAT OBJECTS TRACEBACKS
CALLS FORMATTING OPERATORS TRUTHVALUE
CLASSES FRAMEOBJECTS PACKAGES TUPLELITERALS
CODEOBJECTS FRAMES POWER TUPLES
COERCIONS FUNCTIONS PRECEDENCE TYPEOBJECTS
COMPARISON IDENTIFIERS PRINTING TYPES
COMPLEX IMPORTING PRIVATENAMES UNARY
CONDITIONAL INTEGER RETURNING UNICODE
CONTEXTMANAGERS LISTLITERALS SCOPING
CONVERSIONS LISTS SEQUENCEMETHODS1

help> STRINGS
String literals

String literals are described by the following lexical definitions:

 stringliteral ::= [stringprefix](shortstring | longstring)
 stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"
 shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
...

:q

help> <CTRL-D>
You are now leaving help and returning to the Python interpreter.
If you want to ask for help on a particular object directly from the
interpreter, you can type "help(object)". Executing "help('string')"
has the same effect as typing a particular string at the help> prompt.
>>>

Chapter 6 ■ advanCed SCripting

83

The help function is also very useful in EM CLI. The developers spent a lot of time making sure information is
contained within the program. Unlike Python, typing help() does not drop into another command line; it simply
prints out a list of verbs, sorted and grouped by category.

The individual verbs can then be specified in the help function for more detailed information on that verb.
For example, typing help('list_active_sessions') in EM CLI would print out detailed information on the
list_active_sessions() function.

Python Objects
An object in Python is an entity that can hold data and, in most cases, be manipulated by changing the data contained
within the object or by changing the attributes of the object itself. The content and complexity of a Python object
depends on the object type. For example, if you need an object with just a single digit, you would use a number object.
If you need a multiple key/value object, you would use a dictionary object. The life of an object begins when it is
created or assigned a value and ends when it is explicitly destroyed or when the Python session ends. This section lists
the most common object types and shows examples of how to create and use them.

Numbers and Strings
A number object is an entity that contains a single integer value. A string object is an entity that contains a single
string value. These types of objects are mutable, which means the assigned value can be changed or replaced at any
point during the life of the object. These are by far the most commonly used objects in Python.

The “Hello World!” example introduced the most basic object in Python: the string. Strings are used everywhere
in Python, and most other objects are made up of numbers and strings. Strings can include numbers, but numbers
cannot include strings.

This example shows how to create a simple string object by assigning a string to a variable:

>>> mystring = 'Here is my string'
>>> type(mystring)
<type 'str'>

I can create a number object by assigning a number to a variable. int stands for integer:

>>> mynumber = 12345
>>> type(mynumber)
<type 'int'>

Numbers and strings are different types of objects. Trying to join a string value to a number value results
in error:

>>> mystring + mynumber
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

Chapter 6 ■ advanCed SCripting

84

Lists
Lists are a common way to store an indexed group of values within an object. A simple list is assigned to an object
in a similar way to how a string is assigned to an object, the difference being that the object is now a list object, not a
string object. The significance of this is not as great in Python as in other languages, but it is a good idea to have an
understanding that there is a difference that can potentially have an impact on the behavior of a program.

This example shows a list object with a single value. The values assigned to a list are encapsulated by brackets.
Without the brackets this would be a simple string object. See here:

>>> mylist = ['one']
>>> print(mylist)
['one']
>>> type(mylist)
<type 'list'>
>>> mystring = 'one'
>>> type(mystring)
<type 'str'>

Simple Lists
A list with a single value can be useful, but the purpose of lists is to be able to assign multiple list values within a
single object. These values are referred to as elements. In the previous example, a value of one was assigned as the first
element in the mylist object.

This example creates a list called mylist with five members. Printing the list displays it exactly how it was created.
The five elements are printed within an opening and closing bracket. The brackets are what tell us that this is a list and
not a string or any other type of object. A list index of 2 is actually the third element in the list since the index numbers
start at 0.

The power of lists comes from the plethora of ways that the individual elements can be manipulated. For
example, any element can be queried from a list by specifying its index number. The index of a list starts at zero, so the
first element of a list is assigned the number zero:

>>> mylist = ['one', 'two', 'three', 'four', 'five']
>>> print(mylist)
['one', 'two', 'three', 'four', 'five']
>>> type(mylist)
<type 'list'>
>>> print(mylist[2])
three

A list is mutable, which means it can be manipulated after it has been created. It can be lengthened or shortened,
and the elements can be changed. This example shows the mylist object being appended with the value of 6. The
number of elements in this object goes from five to six:

>>> mylist.append('six')
>>> print(mylist)
['one', 'two', 'three', 'four', 'five', 'six']
>>> print(len(mylist))
6

The len() function used in the previous example displays the number of elements in the list. Like many
functions, len() can be used on lists, strings, and all other object types.

Chapter 6 ■ advanCed SCripting

85

The next example shows how to further manipulate a list by extracting and deleting the last element of
myshortlist. The first command in this example does three things. The pop function extracts and then deletes from
mylist the last element, creates the myshortlist list object, and assigns to it the “popped” element. If the pop()
function weren’t preceded by an object assignment, it would simply print the element:

>>> myshortlist = mylist.pop()
>>> print(myshortlist)
six
>>> print(mylist)
['one', 'two', 'three', 'four', 'five']

Lists in EM CLI
Lists play a critical role in EM CLI. The output of the functions in EM CLI may produce a list with hundreds or even
thousands of elements, and those elements may be composed of strings, numbers, or other objects. The lists in EM
CLI work in exactly the same way that they do in the previous examples.

Understanding everything about the following example is not important right now, but it is important to note
that the list() function is one of the most-used functions in EM CLI and always returns a list object. This list has 29
elements that can be “popped” off one at a time and assigned to another object:

emcli>mytargs = list(resource='Targets').out()['data']
emcli>type(mytargs)
<type 'list'>
emcli>len(mytargs)
29
emcli>myshorttargs = mytargs.pop()
emcli>print(myshorttargs)
{'TYPE_DISPLAY_NAME': 'Oracle WebLogic Server', 'TYPE_QUA...

The output of the list EM CLI function is a list of target information.

Strings and Lists
This section will show how to accomplish the common task of finding a running Oracle database listener in Linux
by using the Linux ps and grep commands. The first part of the example will show how to produce the process
information. The second part of the example will show how to parse the output of the ps command using various
Linux utilities, followed by the use of Python to accomplish the same task.

Listing 6-1 shows a detailed listing of an Oracle database listener background process. The ps -ef command lists
all of the running processes on the server, which are piped into grep to limit the output to just the listener processes.

Listing 6-1. Find the Oracle database listener process in Linux

[oracle@server]$ ps -ef | grep [t]nslsnr
oracle 1723 1 0 16:21 ? 00:00:01
/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit

The combination of ps and grep shows that a single listener is running and shows the full command in the eighth
column of the output. The listener command actually includes two spaces, so to us it looks like the command spans
the eighth, ninth, and tenth space-delimited columns. The awk command parses this information quite well, as shown
in Listing 6-2.

Chapter 6 ■ advanCed SCripting

86

Listing 6-2. Use awk to parse the process detail

[oracle@server]$ ps -ef | grep [t]nslsnr | awk '{print $8,$9,$10}'
/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit

Listing 6-3 shows that Python would treat the output from the ps command as an object made up of pieces. The delimiter
used in the previous example is one or more spaces. We can parse the same command using Python instead of awk.

Listing 6-3. Use Python to parse the process detail

>>> psout = 'oracle 1723 1 0 16:21 ? 00:00:01
/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit'
>>> type(psout)
<type 'str'>
>>> psoutlist = psout.split()
>>> type(psoutlist)
<type 'list'>
>>> psoutlist[7:]
['/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr', 'LISTENER', '-inherit']
>>> ' '.join(psoutlist[7:])
'/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit'
>>> psoutstring = ' '.join(psoutlist[7:])
>>> psoutstring
'/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit'

psoutlist = psout.split() breaks apart the string into a list made up of string elements based on a delimiter of
whitespace and assigns it to the psoutlist list object. psoutlist[7:] prints a subset of the psoutlist list object from
the eighth (remember that a list index starts at 0) to the final element. psoutstring = ' '.join(psoutlist[7:])
joins the subset of elements back into a string delimited by a single space and assigns it to the psoutstring string
object. What really makes Python shine is that this can all be done in one command, as shown in Listing 6-4.

Listing 6-4. Combine the commands from Listing 6-3 into a single command

>>> ' '.join('oracle 1723 1 0 16:21 ? 00:00:01
/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit'.split()[7:])
'/u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr LISTENER -inherit'

Listing 6-3 populates the psout variable directly with the output from the ps command. The process of capturing
the output of the ps command could also be done directly from within Python, as shown in Listing 6-3a.

Listing 6-3a. Capture the ps command output using the Python subprocess module

>>> import subprocess
>>> mycommand = ['ps', '-ef']
>>> psoutput = subprocess.Popen(mycommand, stdout=subprocess.PIPE).communicate()[0].split('\n')
>>> for i in psoutput:
... if 'tnslsnr' in i:
... psout = i

Lists are a useful way of grouping strings and numbers together in Python, but sometimes a more complex object
is required. Sometimes an index of single elements is not enough and we need a way of grouping keys and values
together. This is especially true when working with EM CLI, where arrays are common and often complex. This is
where Python dictionary objects come in.

Chapter 6 ■ advanCed SCripting

87

Dictionaries
An equally important object type to understand in Python, and especially in EM CLI, is the “dictionary.” Similar to
Java’s “hashtable,” Perl’s “hash” objects, and PL/SQL’s “associative arrays,” dictionaries are made up of a collection
of key/value pairs. In other words, each element of the dictionary will be made up of one key and one value.
The value can then be extracted by specifying its corresponding key. The syntax for calling a value is similar to that
of calling a value in a list, but a key is specified instead of an index value. Listing 6-5 calls the value belonging to the
key labeled 'second'.

Listing 6-5. Call a value from a dictionary by specifying the key to which it belongs

emcli>mydic = {'first': 'one', 'second': 'two', 'third': 'three', 'fourth': 'four', 'fifth': 'five'}
emcli>mydic['second']
'two'

Dictionaries use keys instead of a numerical index. JSON is represented as a dictionary object in Python since
JSON is little more than an efficient key/value object. This can be shown clearly in EM CLI, as seen in Listing 6-6.

Listing 6-6. Use the list() function in EM CLI to show a JSON dictionary

emcli>set_client_property('EMCLI_OUTPUT_TYPE', 'JSON')
emcli>list(resource='Targets').isJson()
True
emcli>type(list(resource='Targets').out())
<type 'dict'>
emcli>list(resource='Targets').out()
{'exceedsMaxRows': False, 'columnHeaders': ['TARGET_NAM...

Most EM CLI functions include an isJson function, which returns a boolean result indicating whether the result
set will be JSON or not. This command indicates that the result set will return JSON instead of text.

By default, the interactive mode of EM CLI is text mode. The first command changes that behavior so that all
result sets are returned as JSON.

The fourth line calls the out sub-function of the list function. This out function either prints to the screen or feeds
to another object the output of the function that is calling it. In this case, the list function is returning information
about the EM targets, and the type function is telling us that this output is being returned as a dictionary object.

The sixth line shows a very small part of the actual output, showing that it is contained within curly braces. The
curly braces are what indicate that this object is a dictionary. Notice that one of the values is a list rather than a string.
A dictionary value can be any other object type, including another dictionary.

Logon Script
It is necessary when using either interactive or scripting modes of EM CLI to establish a connection between EM CLI
and the OMS. This is a repeatable procedure, so it is a good practice to have a script in place that can be called each
time one calls a script or logs into EM CLI interactive mode.

The logon script is described below with comments regarding the various parts of it. The complete script is listed
after the analysis.

The EM CLI classes and functions need to be imported first:

from emcli import *

Chapter 6 ■ advanCed SCripting

88

This could also be done using a direct import:

import emcli

However, in this case each call to an EM CLI function would need to be qualified with the module name emcli.
The next step is to identify an OMS in which to connect:

set_client_property('EMCLI_OMS_URL', 'https://em12cr3.example.com:7802/em')

Following that one needs either to identify a valid SSL certificate file by which to authenticate with the OMS or to
specify that you trust any certificate presented:

set_client_property('EMCLI_CERT_LOC', '/path/to/cert.file')

or

set_client_property('EMCLI_TRUSTALL', 'true')

Optionally, you can specify which format you would like the commands to return: “JSON” or “TEXT.” Unless
there is a specific need for text output, JSON is the most versatile and easy to manipulate. However, it is also much
more difficult to read:

set_client_property('EMCLI_OUTPUT_TYPE', 'JSON')

or

set_client_property('EMCLI_OUTPUT_TYPE', 'TEXT')

Finally, specify with which user you would like to log in and, optionally, that user’s password. If the password is
not specified, you will be prompted for it.:

print(login(username='sysman', password='foobar'))

The complete script is show in Listing 6-7.

Listing 6-7. start.py logon script

from emcli import *
set_client_property('EMCLI_OMS_URL', 'https://em12cr3.example.com:7802/em')
set_client_property('EMCLI_TRUSTALL', 'true')
set_client_property('EMCLI_OUTPUT_TYPE', 'JSON')
print(login(username='sysman', password='foobar'))

Although EM CLI may be started from the same directory that contains the logon script, Jython will not see it
unless the directory is within its search path. Listing 6-8 shows the error message you would receive if the start.py
file you are trying to import isn’t in the Jython search path.

https://em12cr3.example.com:7802/em
https://em12cr3.example.com:7802/em

Chapter 6 ■ advanCed SCripting

89

Listing 6-8. start.py not in the Jython search path

emcli>import start
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named start

The JYTHONPATH environment variable tells Jython the additional directories in which to search for modules
to be imported. Set this variable before executing emcli. In Listing 6-9, the start module can now be successfully
imported, either directly from the interactive mode command line or within a script in scripting mode.

Listing 6-9. Successful execution of the start.py script

[oracle@server]$ export JYTHONPATH=/home/oracle/scripts
[oracle@server]$ emcli
emcli>import start
Login successful

If you are not comfortable with including your password in the script (you shouldn’t be) and only specify the
username parameter with the login function, you will be prompted for the password:

Enter password : **********

Listing 6-10 shows an alternative method of authenticating that affords one the security of not including the
password in the script while at the same time not requiring one to enter the password every time the script is invoked.
The password in this example would be contained in the .secret file, which should have permissions set such that it
can be read only by the operating system user invoking EM CLI.

Listing 6-10. start.py logon script using a password read from an external file

from emcli import *
set_client_property('EMCLI_OMS_URL', 'https://em12cr3.example.com:7802/em')
set_client_property('EMCLI_TRUSTALL', 'true')
set_client_property('EMCLI_OUTPUT_TYPE', 'JSON')
f = open('/home/oracle/.secret','r')
pwd = f.read()
print(login(username='sysman', password=pwd))

The steps included in the start.py script need to be executed every time EM CLI is invoked in scripted or
interactive mode, which is why it is important to script the login process. Any script called directly should invoke the
import start command before doing anything else.

Python Scripting with EM CLI to Set Target Properties
EM CLI includes a function to change the properties of a target. If the properties of a small number of targets need to
be updated, it is easy to simply execute the set_target_property_value() function for each of those targets. When
the need arises to update the properties of tens or even hundreds of targets, executing the function for each target is
not efficient. Fortunately, with EM CLI we can take advantage of the full scripting functionality of Python.

A for loop can be used to iterate through any object and perform any task on each one of those object pieces.
For example, it is common to add or update target properties after a target has been added. Any task involving changing
target properties for more than a couple of targets in the GUI is tedious and time-consuming. There is more than one
way to accomplish this task within EM CLI, but all of them are easier and more efficient than the GUI can offer.

https://em12cr3.example.com:7802/em

Chapter 6 ■ advanCed SCripting

90

For demonstration purposes, we’ll use the interactive mode, but all of these commands will also work in
scripting mode:

emcli>import start
Enter password : **********
Login successful

Create an object containing all of the targets. Don’t worry about filtering out targets yet. That part will be done
further down in the script:

emcli>myobj = get_targets().out()['data']
emcli>len(myobj)
29

In this case, I know I have 29 targets in my repository. We want to update the Lifecycle Status and Location
properties of the targets we just added that have the prefix of TEST_ with Development and COLO, respectively. Since we
may want to add to or change this list of properties in the future, we’ll put these into a dictionary as keys and values:

emcli>myprops = {'LifeCycle Status':'Development', 'Location':'COLO'}

We want to make sure we choose the correct targets for this update, so we will use regular expressions to filter the
target names. Using regular expressions within Jython requires that we import another module:

emcli>import re

Now we can create the regular expression that we will use to filter the target names. This filter will be applied to
each target name to determine if the target properties will be applied to that target:

emcli>filtermatch = '^TEST_'
emcli>myreg = re.compile(filtermatch)

Create a for loop to iterate through the targets. When writing programs like this, it is a good idea to write a little
code and then test, especially when just getting started. Once the loop is created, we’ll run it with a simple print
command to make sure we are iterating through the appropriate information.

Make sure the lines shown in the example preceded by three dots are indented properly. An indentation in
Python is four spaces:

emcli>for targ in myobj:
... print(targ['Target Name'])

This shows us that we are able to see all of the target names in our repository. Now we can apply the filter so we
are only seeing the targets that start with TEST_:

emcli>for targ in myobj:
... if myreg.search(targ['Target Name']):
... print(targ['Target Name'] + \
... ' - ' + targ['Target Type'])

Chapter 6 ■ advanCed SCripting

91

Now we are seeing just the targets we want to modify. Let’s add in the command to change the properties.
However, instead of running the commands blindly, we’ll just print the command that the loop would have run to
make sure the commands are what we want without actually affecting the targets:

emcli>for targ in myobj:
... if myreg.search(targ['Target Name']):
... mycommand = 'set_target_property_value(' + \
... 'property_records="' + \
... targ['Target Name'] + ':' + \
... targ['Target Type'] + \
... ':LifeCycle Status:Development")'
... print(mycommand)
set_target_property_value(property_records="TEST_em12cr3.example.com:host:LifeCycle
Status:Development")
set_target_property_value(property_records="TEST_em12cr3.example.com:3872:oracle_emd:LifeCycle
Status:Development")

The set_target_property_value() function commands are printed to the screen. These commands can then be
copied and pasted within the same EM CLI session:

emcli>set_target_property_value(property_records="TEST_em12cr3.example.com:host:LifeCycle
Status:Development")
Properties updated successfully

However, a problem pops up immediately if we try to run the command for an agent target:

emcli>set_target_property_value(property_records="TEST_em12cr3.example.com:3872:oracle_emd:LifeCycle
Status:Development")
Syntax Error: Invalid value for parameter "INVALID_RECORD_ERR":
"em12cr3.example.com:3872:oracle_emd:LifeCycle Status:Development"

The target name TEST_em12cr3.example.com:3872 contains the default delimiter, the colon character, which
means we need to include another parameter in the set_target_property_value() function to change the delimiter.
The subseparator parameter will change the character that separates the different parts of the property_records
parameter from a colon to an @ sign. Notice the addition of the mysubsep and myproprecs variables:

emcli>for targ in myobj:
... if myreg.search(targ['Target Name']):
... mysubsep = 'property_records=@'
... myproprecs = targ['Target Name'] + \
... '@' + targ['Target Type'] + \
... '@LifeCycle Status@Development'
... mycommand = 'set_target_property_value(' + \
... 'subseparator="' + \
... mysubsep + '", property_records="' + \
... myproprecs + '")'
... print(mycommand)
set_target_property_value(subseparator=" property_records=@", property_records=" TEST_em12cr3.

example.com@host@LifeCycle Status@Development")
set_target_property_value(subseparator=" property_records=@", property_records=" TEST_em12cr3.

example.com:3872@oracle_emd@LifeCycle Status@Development")

Chapter 6 ■ advanCed SCripting

92

The commands are again printed to the screen. The properties for the TEST_em12cr3.example.com target have
already been updated, so only the command to change the TEST_em12cr3.example.com:3872 target needs to be
copied and pasted:

emcli>set_target_property_value(subseparator="property_records=@",
property_records="TEST_em12cr3.example.com:3872@oracle_emd@LifeCycle Status@Development")
Properties updated successfully

The example we just looked at hardcodes the properties. This will work fine if the properties never change, but
at the beginning of this exercise we created the myprops dictionary so we could easily change the property keys and
values:

emcli>myprops = {'LifeCycle Status':'Development', 'Location':'COLO'}

Now let’s change the code we just created to take advantage of this variable. We’ll continue to use the debugging
mode we included in the code to print the commands to screen and then add a nested for loop inside the existing for
loop; we’ll then iterate through the items of the myprops dictionary. There is also an additional change here by adding
the mydelim variable. By now you should be noticing a pattern; the more you parameterize, the easier your code is to
read, change, troubleshoot, etc. Now if we decided to change the subseparator from an @ sign to something else, we
would change it in one place, not four:

emcli>for targ in myobj:
... if myreg.search(targ['Target Name']):
... mydelim = '@'
... mysubsep = 'property_records=' + mydelim
... myproprecs = targ['Target Name'] + \
... mydelim + targ['Target Type'] + mydelim
... for propkey, propvalue in myprops.items():
... myproprecprops = propkey + mydelim + propvalue
... mycommand = 'set_target_property_value(' + \
... 'subseparator="' + \
... mysubsep + '", property_records="' + \
... myproprecs + \
... myproprecprops + '")'
... print(mycommand)

These commands should work great for copy and paste, but we want to automate it further to skip the copy and
paste and run the commands automatically in the code. However, when problems arise later, we don’t want to lose
the ability to look at this verbose output again, so we’ll leave the debug in place and supplement it with the ability to
choose whether we want to see the command printed to the screen or have it be run automatically by the script.

Adding a debug variable at the beginning of the script and checking for the value of that variable within the script
is an easy way to enable or disable a “testing” mode. By default the debug variable will be false unless it is assigned a
value, in which case it becomes true:

emcli>debug = ''
emcli>if debug:
... print('True')
... else:
... print('False')
...
False

Chapter 6 ■ advanCed SCripting

93

emcli>debug = 'Yes'
emcli>if debug:
... print('True')
... else:
... print('False')
...
True

Now we can add this logic into the script and use it to decide whether we are debugging the script or executing
it normally. There is also a line of output for normal execution mode that prints out some basic information about
what the commands are doing:

emcli>debug = ''
emcli>for targ in myobj:
... if myreg.search(targ['Target Name']):
... mydelim = '@'
... mysubsep = 'property_records=' + mydelim
... myproprecs = targ['Target Name'] + mydelim + \
... targ['Target Type'] + mydelim
... for propkey, propvalue in myprops.items():
... myproprecprops = propkey + mydelim + propvalue
... if debug:
... mycommand = 'set_target_property_value(' + \
... 'subseparator="' + mysubsep + \
... '", property_records="' + \
... myproprecs + \
... myproprecprops + '")'
... print(mycommand)
... else:
... print('Target: ' + targ['Target Name'] + \
... ' (' + targ['Target Type'] + \
... ')\n\tProperty: ' + propkey + \
... '\n\tValue: ' + propvalue)
... set_target_property_value(
... subseparator=mysubsep,
... property_records=myproprecs + myproprecprops)
...
Target: TEST_em12cr3.example.com (host)
 Property: Location
 Value: COLO
Properties updated successfully

Target: TEST_em12cr3.example.com (host)
 Property: LifeCycle Status
 Value: Development
Properties updated successfully

This function makes things pretty easy, and we can easily change the properties or the target list filter. Using
the debug variable, we can print out the commands instead of executing them. However, we can further simplify
the process of updating target properties by moving all of these commands into a class. In addition, we’ll add more
functionality in order to make it more robust and less prone to errors.

Chapter 6 ■ advanCed SCripting

94

Python Class with EM CLI to Set Target Properties
Creating a Python “class” allows us to “package” code into a single unit in which all of the code that is part of the
class is both aware of and can use all of the other code within that class. From a class, one can create an “instance.”
An instance is an object in Python, and all of the changes to pieces of that instance are persistent for the life of that
instance. Listing 6-11 shows the full text of the updateProps.py script, which contains the updateProps() class. For
best results, create a file on the file system called updateProps.py and paste the full text of the code in it:

Listing 6-11. update Props.py creates the updateProps() class

import emcli
import re
import operator

class updateProps():
 def __init__(self, agentfilter='.*', typefilter='.*',
 namefilter='.*', propdict={}):
 self.targs = []
 self.reloadtargs = True
 self.props(propdict)
 self.__loadtargobjects()
 self.filt(agentfilter=agentfilter, typefilter=typefilter,
 namefilter=namefilter)
 def __loadtargobjects(self):
 if self.reloadtargs == True:
 self.reloadtargs = False
 self.fulltargs = \
 emcli.list(resource='Targets').out()['data']
 self.targprops = \
 emcli.list(resource='TargetProperties'
).out()['data']
 def props(self, propdict):
 assert isinstance(propdict, dict), \
 'propdict parameter must be ' + \
 'a dictionary of ' + \
 '{"property_name":"property_value"}'
 self.propdict = propdict
 def filt(self, agentfilter='.*', typefilter='.*',
 namefilter='.*',
 sort=('TARGET_TYPE','TARGET_NAME'), show=False):
 self.targs = []
 __agentcompfilt = re.compile(agentfilter)
 __typecompfilt = re.compile(typefilter)
 __namecompfilt = re.compile(namefilter)
 self.__loadtargobjects()
 for __inttarg in self.fulltargs:
 if __typecompfilt.search(__inttarg['TARGET_TYPE']) \
 and __namecompfilt.search(
 __inttarg['TARGET_NAME']) \
 and (__inttarg['EMD_URL'] == None or \
 __agentcompfilt.search(__inttarg['EMD_URL'])):
 self.targs.append(__inttarg)
 __myoperator = operator

Chapter 6 ■ advanCed SCripting

95

 for __myop in sort:
 __myoperator = operator.itemgetter(__myop)
 self.targssort = sorted(self.targs, key=__myoperator)
 if show == True:
 self.show()
 def show(self):
 print('%-5s%-40s%s' % (
 ' ', 'TARGET_TYPE'.ljust(40, '.'),
 'TARGET_NAME'))
 print('%-15s%-30s%s\n%s\n' % (
 ' ', 'PROPERTY_NAME'.ljust(30, '.'),
 'PROPERTY_VALUE', '=' * 80))
 for __inttarg in self.targssort:
 print('%-5s%-40s%s' % (
 ' ', __inttarg['TARGET_TYPE'].ljust(40, '.'),
 __inttarg['TARGET_NAME']))
 self.__showprops(__inttarg['TARGET_GUID'])
 print('')
 def __showprops(self, guid):
 self.__loadtargobjects()
 for __inttargprops in self.targprops:
 __intpropname = \
 __inttargprops['PROPERTY_NAME'].split('_')
 if __inttargprops['TARGET_GUID'] == guid and \
 __intpropname[0:2] == ['orcl', 'gtp']:
 print('%-15s%-30s%s' %
 (' ', ' '.join(__intpropname[2:]).ljust(
 30, '.'),
 __inttargprops['PROPERTY_VALUE']))
 def setprops(self, show=False):
 assert len(self.propdict) > 0, \
 'The propdict parameter must contain ' + \
 'at least one property. Use the ' + \
 'props() function to modify.'
 self.reloadtargs = True
 __delim = '@#&@#&&'
 __subseparator = 'property_records=' + __delim
 for __inttarg in self.targs:
 for __propkey, __propvalue \
 in self.propdict.items():
 __property_records = __inttarg['TARGET_NAME'] + \
 __delim + __inttarg['TARGET_TYPE'] + \
 __delim + __propkey + __delim + __propvalue
 print('Target: ' + __inttarg['TARGET_NAME'] +
 ' (' + __inttarg['TARGET_TYPE'] +
 ')\n\tProperty: '
 + __propkey + '\n\tValue: ' +
 __propvalue + '\n')
 emcli.set_target_property_value(
 subseparator=__subseparator,
 property_records=__property_records)
 if show == True:
 self.show()

Chapter 6 ■ advanCed SCripting

96

Once there is a file containing the code, we can use this code to update the properties of Enterprise Manager
targets. Start a session of EM CLI and establish a login to the OMS.

Using the updateProps() Class
Listing 6-12 shows an example of how to use the updateProps() class to update the properties of some EM CLI
targets. The class is doing exactly what the commands did in the previous section, but you will notice how much less
code is required.

Listing 6-12. Import and use the updateProps() class to change target properties

emcli>import updateProps
emcli>myinst = updateProps.updateProps()
emcli>myinst.props({'LifeCycle Status':'Development'})
emcli>myinst.filt(namefilter='^em12cr3.example.com$', typefilter='host')
emcli>myinst.show()
 TARGET_TYPE.............................TARGET_NAME
 PROPERTY_NAME.................PROPERTY_VALUE
==

 host....................................em12cr3.example.com
 target version................6.4.0.0.0
 os............................Linux
 platform......................x86_64

emcli>myinst.setprops(show=True)
Target: em12cr3.example.com (host)
 Property: LifeCycle Status
 Value: Development

 TARGET_TYPE.............................TARGET_NAME
 PROPERTY_NAME.................PROPERTY_VALUE
==

 host....................................em12cr3.example.com
 target version................6.4.0.0.0
 os............................Linux
 platform......................x86_64
 lifecycle status..............Development

The example in Listing 6-12 updated one property for one target. The updateProps() class is capable of updating
any number of properties for any number of targets. Listing 6-13 expands on the previous example by updating
additional properties of the same target.

Chapter 6 ■ advanCed SCripting

97

Listing 6-13. Expand the properties to be updated

emcli>myinst.props({'LifeCycle Status':'Development', 'Location':'COLO', 'Comment':'Test EM'})
emcli>myinst.setprops(show=True)
Target: em12cr3.example.com (host)
 Property: Location
 Value: COLO

Target: em12cr3.example.com (host)
 Property: LifeCycle Status
 Value: Development

Target: em12cr3.example.com (host)
 Property: Comment
 Value: Test EM

 TARGET_TYPE.............................TARGET_NAME
 PROPERTY_NAME.................PROPERTY_VALUE
==

 host....................................em12cr3.example.com
 target version................6.4.0.0.0
 os............................Linux
 platform......................x86_64
 location......................COLO
 comment.......................Test EM
 lifecycle status..............Development

We did not change the target filter. The only things we changed about the myinst instance were the properties
to be updated. The myinst.props() function changed the properties to be applied to the targets. The output showed
that three different properties for the same target were updated.

Let’s assume that we want the same three properties applied to additional targets but the only targets we want
them applied to are the host and agent targets of the Enterprise Manager OMS server. We will leave the properties
alone, but we’ll update the target filter to include the additional target type of oracle_emd, as shown in Listing 6-14.

Listing 6-14. Change the target type to include the agent target

emcli>myinst.filt(namefilter='^em12cr3.example.com.*$', typefilter='host|oracle_emd')
emcli>myinst.show()
 TARGET_TYPE.............................TARGET_NAME
 PROPERTY_NAME.................PROPERTY_VALUE
==

 host....................................em12cr3.example.com
 target version................6.4.0.0.0
 os............................Linux
 platform......................x86_64
 location......................COLO
 comment.......................Test EM
 lifecycle status..............Development

Chapter 6 ■ advanCed SCripting

98

 oracle_emd..............................em12cr3.example.com:3872
 os............................Linux
 platform......................x86_64
 target version................12.1.0.3.0
emcli>myinst.setprops(show=True)
Target: em12cr3.example.com (host)
 Property: Location
 Value: COLO

Target: em12cr3.example.com (host)
 Property: LifeCycle Status
 Value: Development

Target: em12cr3.example.com (host)
 Property: Comment
 Value: Test EM

Target: em12cr3.example.com:3872 (oracle_emd)
 Property: Location
 Value: COLO

Target: em12cr3.example.com:3872 (oracle_emd)
 Property: LifeCycle Status
 Value: Development

Target: em12cr3.example.com:3872 (oracle_emd)
 Property: Comment
 Value: Test EM

 TARGET_TYPE.............................TARGET_NAME
 PROPERTY_NAME.................PROPERTY_VALUE
==

 host....................................em12cr3.example.com
 target version................6.4.0.0.0
 os............................Linux
 platform......................x86_64
 location......................COLO
 comment.......................Test EM
 lifecycle status..............Development

 oracle_emd..............................em12cr3.example.com:3872
 os............................Linux
 platform......................x86_64
 lifecycle status..............Development
 location......................COLO
 comment.......................Test EM
 target version................12.1.0.3.0

The functionality of the updateProps() is extensive and can be as granular or as broad as you would like. A more
detailed description of how to use it can be found in Chapter 8. The best way to fully exploit the updateProps() class
is to understand the code itself.

Chapter 6 ■ advanCed SCripting

99

Understanding the Code
Now that we’ve seen the code itself as well as an overview of how it works, we’ll analyze the code to understand what
is going on behind the scenes. Understanding the code will not only help you exploit all of its functionality, it will also
allow you to customize it to your tastes and needs.

The first thing to notice is that everything after the class declaration is indented by at least four spaces. This
means that all of the code after the class declaration is part of the class. Within the class are function declarations,
and beneath each function is the code that belongs to that function. Let’s break this down into smaller pieces so as to
understand what exactly the code is doing and why using a class offers significant advantages.

The first function shown in Listing 6-15 is called __init__(). This is a reserved function name that will
automatically be executed when the class is called. The word self is a reference to the instance created from the class.
When an instance variable or object (preceded by self.) is created, it is a variable or object assigned to the instance
for the life of that instance. When the myinst instance is created from updateProps(), the list object targs and
boolean variable reloadtargs are created as well. Instance variables and objects can be viewed as part of the instance
in most cases.

Listing 6-15. _init_() is the initial function of the updateProps() class

def __init__(self, agentfilter='.*', typefilter='.*',
 namefilter='.*', propdict={}):
 self.targs = []
 self.reloadtargs = True
 self.props(propdict)
 self.__loadtargobjects()
 self.filt(agentfilter=agentfilter, typefilter=typefilter,
 namefilter=namefilter)

In Listing 6-16, we create an instance object of the updateProps() class by creating an instance of (executing) the
class and assigning that execution to a variable. Then we can print out the reloadtargs instance variable. Notice that
the word without parentheses is a class and the same word with parentheses is an instance.

Listing 6-16. Create an instance from the class

emcli>import updateProps
emcli>myinst = updateProps.updateProps()
emcli>print(myinst.reloadtargs)
False
emcli>type(updateProps.updateProps)
<type 'classobj'>
emcli>type(updateProps.updateProps())
<type 'instance'>
emcli>type(myinst)
<type 'instance'>

The last four lines of the __init__ function call the props, __loadtargobjects, and filt functions. The
props function, which sets the property keys and values, the __loadtargobjects function, which caches the target
information, and the filt function, which allows us to filter the targets assigned to the instance, are defined further
down in the class. Creating an instance parses the entire class before processing commands, so the ordering of
functions within a class is not important.

The querying of the target information is a fairly expensive process and can take between one and twenty
seconds to run. The __loadtargobjects function, as shown in Listing 6-17, is a performance-tuning function that
makes the execution of the class more efficient. It only queries and loads the target information on the creation of the
instance by being called within the __init__ function, and then only when self.reloadtargs is set to true.

Chapter 6 ■ advanCed SCripting

100

Listing 6-17. The __loadtargobjects() of the updateProps() class reloads the EM targets when necessary

 def __loadtargobjects(self):
 if self.reloadtargs == True:
 self.reloadtargs = False
 self.fulltargs = \
 emcli.list(resource='Targets').out()['data']
 self.targprops = \
 emcli.list(resource='TargetProperties'
).out()['data']

The props() function shown in Listing 6-18 sets or modifies the propsdict variable, which holds the key value
dictionary that is used to set the target properties. This was turned into a function rather than just setting the parameter
directly, mainly because it can be called multiple times and includes the assert statement for error checking.

Listing 6-18. The props() function of the updateProps() class updates the propsdict properties dictionary

 def props(self, propdict):
 assert isinstance(propdict, dict), \
 'propdict parameter must be ' + \
 'a dictionary of ' + \
 '{"property_name":"property_value"}'
 self.propdict = propdict

Listing 6-19 shows the filt() function, which defines the scope of targets to which the defined properties will
be applied for this instance. Even after the filter is applied, it can be queried or changed. The first three parameters
(agentfilter, typefilter, and namefilter) are compiled as regular expressions so as to include or exclude targets
for this instance. If the parameters are not defined when the filt() function is called, they are defined implicitly
to include all targets. The sort parameter defines how the filtered targets should be sorted, and, finally, the show
parameter determines if the output of the filtered target list will be printed to screen.

Listing 6-19. The filt() function of the updateProps() class creates and manages the filtered list of targets

def filt(self, agentfilter='.*', typefilter='.*',
 namefilter='.*',
 sort=('TARGET_TYPE','TARGET_NAME'), show=False):
 self.targs = []
 __agentcompfilt = re.compile(agentfilter)
 __typecompfilt = re.compile(typefilter)
 __namecompfilt = re.compile(namefilter)
 self.__loadtargobjects()
 for __inttarg in self.fulltargs:
 if __typecompfilt.search(__inttarg['TARGET_TYPE']) \
 and __namecompfilt.search(
 __inttarg['TARGET_NAME']) \
 and (__inttarg['EMD_URL'] == None or \
 __agentcompfilt.search(__inttarg['EMD_URL'])):
 self.targs.append(__inttarg)
 __myoperator = operator
 for __myop in sort:
 __myoperator = operator.itemgetter(__myop)
 self.targssort = sorted(self.targs, key=__myoperator)
 if show == True:
 self.show()

Chapter 6 ■ advanCed SCripting

101

self.targs = [] defines or clears a list to store the filtered targets. The next three lines compile the regular
expressions for the first three filter parameters. self.__loadtargobjects() calls the __loadtargobjects() function
to reload the full target list. The for __inttarg in self.fulltargs: loop and its nested if statement create the
filtered target list based on the filter parameters. The __myoperator = operator and the following three lines define
the sort key and sort the filtered target list. Finally, the filtered, sorted list can be printed to screen.

Unless the target properties defined for the myinst instance should be applied to all of the targets, the filt
function needs to be called. When the instance is created, the target list is created as well and includes every target
defined in Enterprise Manager. The targs instance list object shows the number of targets currently defined for the
instance, as shown in Listing 6-20.

Listing 6-20. When an instance of updateProps() is created, it includes all targets

emcli>len(myinst.targs)
29

If this instance filtered list is modified, the length of the targs object will reflect the change, as shown in Listing 6-21.

Listing 6-21. The instance targets are pared down with the filt() function

emcli>myinst.filt(namefilter='^orcl.*\.example\.com')
emcli>len(myinst.targs)
2

The filtering of the target list could also take place during instance creation, as shown in Listing 6-22.

Listing 6-22. The instance targets are pared down as part of the instance creation

emcli>myinst = updateProps.updateProps(namefilter='^orcl.*\.example\.com')
emcli>len(myinst.targs)
2

We probably wouldn’t want to make target property changes without first knowing the target names and the
currently defined properties for those targets. The show() function in Listing 6-23 allows us to see this information,
printed in a format that is easier to read than JSON or a Python dictionary.

Listing 6-23. The show() function of the updateProps() class previews the instance target list along with their
currently allocated properties

def show(self):
 print('%-5s%-40s%s' % (
 ' ', 'TARGET_TYPE'.ljust(40, '.'),
 'TARGET_NAME'))
 print('%-15s%-30s%s\n%s\n' % (
 ' ', 'PROPERTY_NAME'.ljust(30, '.'),
 'PROPERTY_VALUE', '=' * 80))
 for __inttarg in self.targssort:
 print('%-5s%-40s%s' % (
 ' ', __inttarg['TARGET_TYPE'].ljust(40, '.'),
 __inttarg['TARGET_NAME']))
 self.__showprops(__inttarg['TARGET_GUID'])
 print('')

Chapter 6 ■ advanCed SCripting

102

The __showprops() function shown in Listing 6-24 is called from the show() function in a recursive manner to
retrieve each target property defined for a target. In other words, the __showprops() function is called once for each
target defined for the instance, and the properties defined for the target are stored with it as child records.

Listing 6-24. The __showprops() function of the updateProps() class is called to retrieve the properties for each
target defined in the instance

def __showprops(self, guid):
 self.__loadtargobjects()
 for __inttargprops in self.targprops:
 __intpropname = \
 __inttargprops['PROPERTY_NAME'].split('_')
 if __inttargprops['TARGET_GUID'] == guid and \
 __intpropname[0:2] == ['orcl', 'gtp']:
 print('%-15s%-30s%s' %
 (' ', ' '.join(__intpropname[2:]).ljust(
 30, '.'),
 __inttargprops['PROPERTY_VALUE']))

Finally, Listing 6-25 shows the setprops() function, which is called to make the magic happen. At the point
that this function is called, the filtered target list has already been defined and the propdict dictionary variable is
populated with the property name–value pairs that will be set for the filtered target list.

Listing 6-25. The __setprops() function of the updateProps() class is called to apply the properties updates

def setprops(self, show=False):
 assert len(self.propdict) > 0, \
 'The propdict parameter must contain ' + \
 'at least one property. Use the ' + \
 'props() function to modify.'
 self.reloadtargs = True
 __delim = '@#&@#&&'
 __subseparator = 'property_records=' + __delim
 for __inttarg in self.targs:
 for __propkey, __propvalue \
 in self.propdict.items():
 __property_records = __inttarg['TARGET_NAME'] + \
 __delim + __inttarg['TARGET_TYPE'] + \
 __delim + __propkey + __delim + __propvalue
 print('Target: ' + __inttarg['TARGET_NAME'] +
 ' (' + __inttarg['TARGET_TYPE'] +
 ')\n\tProperty: '
 + __propkey + '\n\tValue: ' +
 __propvalue + '\n')
 emcli.set_target_property_value(
 subseparator=__subseparator,
 property_records=__property_records)
 if show == True:
 self.show()

Chapter 6 ■ advanCed SCripting

103

The assert statement does some error checking to make sure that there is at least one property name–value
pair in the propdict variable to set on the target list. self.reloadtargs = True tells the instance that the target and
properties information should be freshly queried from the database after the new target properties have been set.
__delim = '@#&@#&&' is a set of characters that should never be found in a target or property name and is used as
the delimiter in the emcli.set_target_property_value() function. __subseparator = 'property_records=' +
__delim is also used for formatting.

The first for loop iterates through the filtered target list. The second for loop iterates through the propdict
variable. Inside the second nested for loop is the emcli.set_target_property_value() function, which actually sets
the properties on each target. This set_target_property_value() function is executed once for each property per target,
so the total number of executions of this function will be the number of records in the filtered target list multiplied by
the number of property name–value pairs in propdict. As each property is set, a result is printed to the screen.

Using a class in Python requires a little extra time and effort up front, but it is well worth it. The code you work so
hard to create is scalable, extensible, and reusable. You can reuse code from any classes you create and do not have to
worry about testing them again.

Summary
Enterprise Manager is truly a powerful tool. Having a firm grasp of the functions of the graphical interface are essential
to using it effectively. EM CLI greatly enhances the ability to take advantage of all of the powerful features of EM. EM
CLI isn’t the easiest thing to learn, but having the ability to script and automate activities through it offers a clear
advantage for the administrator.

Python is a powerful programming language whose maturity has been tested over the last 20-plus years. EM
CLI is written in Jython, the Java implementation of Python. Jython allows the administrator to increase their EM
effectiveness by taking advantage of the power and agility of Python alongside EM CLI.

The learning curve of any command-line tool is high, but the Python language and EM CLI are quite intuitive.
If you get stuck on syntax or functionality, help is plentiful and easy to come by. This chapter gives examples that
were created out of necessity in real-world production environments where it wasn’t feasible to do these tasks
through the GUI.

The real-world environments you, the reader, will face may differ from those here, but the principals and much
of the code demonstrated in this chapter can be used to create effective and efficient solutions for the Enterprise
administrator.

105

Chapter 7

Using the Software Library and
Oracle Extensibility Exchange

The OEM Software Library
Creating a software library ensures that all provisioning, patching, and scripting entities are stored in a location
available to the OEM repository; this conserves resources and costs for the IT infrastructure. The concept appears
simple enough, but often you enter an IT organization and find that there are multiple sources for installation media,
patch locations, and so on. Having a central software library that is configured within the EM12c environment and
sized appropriately (100 GB minimum for small environments, 250 GB minimum for extensive and HA/MAA [High
Availability/Maximum Availability Architecture] environments) ensures that provisioning, patching, and scripting
can be supported for the life of the OEM system.

The added benefit to a central library for software is the reduction of repeating tasks, such as downloading
software or recreating valuable scripts, deployment procedures, and other Enterprise Manager entities.

Software Library
EM12c offers a valuable feature: the OEM software library. The shared storage location must be configured before
you’re able to utilize and administer the software library. This requires a repository that can be referenced and is
located in shared file storage, either an OMS shared file system or an OMS agent file location on the host where the
OMS resides.

When planning the design of the software library storage, consider the OMS environment design. If multiple
OMS instances exist, then a shared or mounted path would be the best option. Depending on the decision, the
configuration will be slightly different for the software library storage setup.

Setting Up Software Library Storage
There are two paths by which this can be achieved, either from the Setup menu for Provisioning and Patching or from
the left option, Cloud Control. The interface shown in Figure 7-1 can be accessed in the EM12c console without the
Cloud Control plugin by clicking on Setup, Provisioning and Patching, then on Software Library.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

106

Once in this wizard, you have the option to view either OMS shared file systems or OMS agent file systems. As
of 12.1.0.3, Oracle recommends that if scripts are to be shared among agent hosts the latter is preferable, but for our
example in Figure 7-1, we are going to use an OMS shared file system for the script repository.

Ensure that any location chosen to become a software library storage location has enough space to retain all
current and future entities, including future patches and installations to ease management challenges. Minimum
guidelines for sizing the software library were offered earlier in this chapter; keep these in mind as you choose the
location so that a secondary repository isn’t required later on.

You can add as many file locations and referenced file locations as required for your OMS configuration (Figure 7-2).
Referenced file locations refer to files located on agent hosts and are a read-only location via the software library.

Figure 7-1. The Setup menu dropdown to access the software library

Figure 7-2. The EM12c software library interface, displaying an existing OMS shared file system

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

107

For multiple OMS environments, you should configure the software library in a non-local shared file system so it
will be accessible to any of the OMS environments.

For the OMS agent file system, the agent simply requires access to the OMS host. This configuration requires a
named or preferred credential setup prior to setup of the agent file system to ensure success. There is an option to
create the preferred credential at the time of the OMS agent file system setup, but failure has been reported in some
Release 2 versions. For this reason, I recommend having the preferred credentials configured before attempting the
agent file system setup.

Once you have clicked the Add button in the software library configuration interface, the screen in Figure 7-3
will appear:

Figure 7-3. Creating a shared file system to be used with the software library

An alias can be provided for any OMS file system for the location, and then the path for the shared file system
is entered. Figure 7-3 shows a Windows OMS host; the path is showing a drive letter assignment as opposed to a
volume entry that we would use on a Unix/Linux environment. Once satisfied with the information provided, the
administrator clicks OK and the shared file system is created.

To create a new software library location with the EM CLI, you can perform the following:

emcli add_swlib_storage_location
 -name="WIN_UPLOAD"
 -path="F:\sw_lib "

This will create a new OMS shared file system that can be used just the same as any created from the console.
An agent shared file system can be created via the EM CLI with the following command:

emcli add_swlib_storage_location
 -name="Agent_WIN_UPLOAD"
 -path="F:\swlib"
 -type="OmsAgent"
 -host="orcl.us.acme.com"
 -credential_name="MyOrclCreds"
 -credential_owner="ORCL_USER"

This shared agent file system is now ready and will utilize existing credentials set up in the EM12c environment as
well as use a shared volume directory path of /u01/swlib.

The third option is a referenced file location. This is used only if the file is stored outside the software library and
will be deployed from this referenced location.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

108

Checking In Entities
Best practice recommends creating a standalone folder within the Enterprise Manager software library to house
scripts or other miscellaneous entities. This is a simple task when performed from the EM12c console.

From the console, click on Enterprise, Provisioning and Patching, and then Software Library, as shown in
Figure 7-4.

Figure 7-4. Accessing the software library in EM12c

In the software library, a number of folders are already present, but a new one should be created to house scripts.
Right click on Software Library (the top tier in the directory) and click on Create Folder (Figure 7-5).

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

109

The screen in Figure 7-6 comes up and allows you to enter information pertaining to the folder.

Figure 7-5. Creating a folder in the EM12c software library

Figure 7-6. Information entries about a folder to be created in the software library

Enter a name that clearly defines the use for the folder and add a description that will assist anyone who reads
the folder’s properties. Verify that you want to create the folder in the parent directory of the software library and, once
satisfied, click OK.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

110

This is the folder that will be used to house the EM CLI scripts in the software library, making it simple to
distinguish them from other stored entities.

Adding Scripts to the Software Library
Loading scripts from the folder created in the last section is performed from the same area within the software library.
First, highlight the CLI_Scripts folder that was created, then click on Actions, Create Entity, and then Component
(Figure 7-8).

Figure 7-7. The new folder just created for command-line scripts in the software library

Figure 7-8. Adding scripting to the software library, a.k.a., creating entities

The script is going to be built out as a single component that can be deployed from the software library. Multiple
scripts can be stored within one component if they are part of a single deployment process.

You have the choice to upload files into the library or to refer to files (a reference). For the example here, the goal
is to check in a script. It will be stored as a single, generic component (a.k.a. entity).

Choose the software library location that will be uploaded to. In our example, we will use the default shared
location for uploading. The logical location will be our CLI_Scripts folder within the console.

Returning to the main page of the software library, the new folder will now be present in the dropdown
(Figure 7-7):

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

111

Click on OK and you’ll be prompted with a second window where you can provide information about the entity
(i.e., script) you are about to add to the software library (Figure 7-10).

Figure 7-10. Entering descriptive data and path information about scripts to be uploaded to the software library

Figure 7-9. How to create generic components and select files in the software library

Click on Next to add the script. The script we are uploading is a simple one that lists out targets in an aesthetically
appealing view (Figure 7-11). Click on the Add button, browse to the script (it can be local on the workstation), and
click OK. Click Save, as we don’t need to add any other provisioning information, and the upload of the script to the
software library is complete.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

112

Tip ■ all entities checked into the software library must have a unique name. if you are adding a script that has the
same name as one that already exists in the software library, it will ask you to rename it before adding it.

The CLI Target Script is now visible in the library and available to the software library.

Building a Report Definition Library
The software library folders can be built out to then create a library available to the repository, rather than writing new
scripts each time or having scripts housed on different hosts or workstations.

Plan out the library carefully, just as you did for the other entities. Create a separate library folder location and
consider the space allocation required for this type of provisioning. Plan for entities from other features, such as
metric extensions, software installations, and application builds that will need to be part of a report definition when
completing a composite report.

OEM Jobs Using CLI Calls
Enterprise jobs are the backbone of the EM environment. They run everything behind the scenes for many of the
features that we use every day as part of Enterprise Manager 12c Cloud Control. The administrator has the added
capability to run EM jobs from the command line. Setting up jobs to run from the EM CLI is a simple process once one
gathers requirements and becomes familiar with them. Using the help function for the create_job verb in the EM
CLI, we can gather the requirements:

$ emcli help create_job
emcli create_job
 -name=<job_name>
 -type=<job_type>
 -input_file="property_file:<filename>"
Description:
 Create and schedule a job.

Options:
 -name: Optional parameter. The name may be specified in the input file instead.
 -type: Optional parameter. The type may be specified in the input file instead.
 -input_file: Required parameter. <filename> must be provided to load the properties for
 creating and scheduling the job.

Figure 7-11. Options for adding, editing, and deleting scripts from the software library folder CLI Target Script

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

113

 A template property file for the job_type can be obtained using EMCLI verb "describe_job_type".
 Another job of the same job type could also be used to generate the property file using EMCLI verb
"describe_job".
 Please make sure that the property file is accessible to the EMCLI client for reading.

Sample:
 Create and schedule a job with name MYJOB1 and of job type MyJobType1 with property file present at
location /tmp/myjob1_prop.txt
 emcli create_job -name=MYJOB1 -job_type=MyJobType1 -
input_file="property_file:/tmp/myjob1_prop.txt"

Create a Job
The following steps must be performed to create a job. In our example, we will first perform upgrades to six existing
agents’ hosts and then remove those previous agents.

To upgrade:

 1. Check to see what agents are available for upgrades.

 2. Input and use file to list those agents and use said file as part of our job.

 3. Upgrade the agents.

 4. Check the status of the process once upgrade is completed.

To remove previous agents:

 1. Check on what existing agents’ installations can be cleaned up after the upgrade.

 2. Use EM CLI to uninstall the old agent installation.

 3. Use an EM CLI host command to remove each of the old agent home directories.

Step 1: Upgrade Agents
List out the agents that we’ll be upgrading as part of the EM job:

>emcli get_upgradable_agents > /u01/app/scripts/upg_agents.txt

orcl2:3872 12.1.0.2.0 12.1.0.3.0 Linux x86-64
 /u01/app/oracle/Agent12c/core/12.1.0.2.0
orcl1:3872 12.1.0.2.0 12.1.0.3.0 Linux x86-64 /u01/app/oracle/Agent12c/core/12.1.0.2.0

>vi /u01/app/scripts/upg_agents.txt
Remove the version information and the platform. You should be left with is the agent host and port:
orcl2:3872
orcl1:3872
...

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

114

Use this file to create an EM job that upgrades the agents and ensures the stage_location direction value has at
least 2 GB of space:

>emcli upgrade_agents -input_file="agents_file:/u01/app/scripts/upg_agents.txt" -job_
name="UPG_021814_AGENTS" -stage_location=/u01/app/jobs
The agent list size is 6

Upgradable Agents

Agent Installed Version Version After Upgrade Platform Oracle Home
----- ----------------- --------------------- -------- ----
orcl2:3872 12.1.0.2.0 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.2.0
orcl1:3872 12.1.0.2.0 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.2.0

You can run the the root.sh from the EM CLI to each of the hosts that have been granted root/sudo
privileges (one more reason to be offered this access via the EM12c environment). If the preferred
credentials do NOT have root access, then you will need to run it manually via the EM CLI or from
each of the agent targets to complete the installations.

Agent Reason
----- ------
orcl1:3872 Preferred Privileged Credential for Oracle Home of Agent : Not Set | Privilege Delegation
for Host : Not Set

Once the agent has been upgraded, you will see the following message so you can check the status of
the job quickly from within the console:

Agent Upgrade Job submitted for Upgradable Agents shown above. Use emcli get_agent_upgrade_status
command or goto EM CONSOLE -> Set Up -> Manage Cloud Control -> Upgrade Agents -> Agent Upgrade
Results to see job status
Job Name : UPG_021814_AGENTS
>emcli get_agent_upgrade_status -job_name=UPG_021814_AGENTS

Showing for each agent in the job UPG_021814_AGENTS

Agent Status Started Ended
----- ------ ------- -----
orcl2:3872 Running 2014-02-18 15:32:58 MST -
orcl1:3872 Running 2014-02-18 15:32:58 MST –
...

If any failures occurred, you will want to check those via the console for the easiest access, or you will need to
query the EM repository. For this example, we will look at the high-level status:

>emcli get_agent_upgrade_status -job_name=UPG_021814_AGENTS

Showing for each agent in the job UPG_021814_AGENTS

Agent Status Started Ended
----- ------ ------- -----
orcl2:3872 Success 2014-02-18 15:32:08 MST 2014-02-18 15:53:22 MST
...

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

115

We can now use this information to create the input file for the next step of removing all of the agents’
installations we no longer want in our EM12c environment:

>emcli get_signoff_agents -output_file="/u01/app/work/signoff_021814.txt"

The previous command will send to an output file that can be used for the next step:

Agents available for Sign-off

Agent Installed Version Platform Oracle Home

----- ----------------- -------- -----------

orcl2:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

orcl1:3872 12.1.0.3.0 Linux x86-64 /u02/oracle/agent12cR2/core/12.1.0.3.0

orcl3:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

orcl4:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

emrp2:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

orcl6:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

To view output of file:

>cat /u01/app/oracle/work/signoff_agents.txt

orcl2:3872
orcl1:3872
orcl3:3872
orcl4:3872
emrp2:3872
orcl6:3872

Step 2: Remove Old Agents
Our second example will clean up agents now that we’ve upgraded all of them. Remove agents by using a match string
in the search via an EM CLI signoff_agents command:

>emcli signoff_agents -agents="oradba%" -job_name=CLEANUP_12cR2_AGNTS

Agents available for Sign-off

Agent Installed Version Platform Oracle Home

----- ----------------- -------- -----------

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

116

orcl2:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

orcl1:3872 12.1.0.3.0 Linux x86-64 /u01/app/oracle/agent12c/core/12.1.0.3.0

Agent Sign-off Job Submitted for the above agents. Use emcli get_signoff_status or goto EM CONSOLE
-> Set Up -> Manage Cloud Control -> Upgrade Agents -> Post Agent Upgrade Tasks -> Sign-off Agent
Results to see job status
Job Name : CLEANUP_12CR2_AGNTS

Once all jobs have been verified as completed, a second check should be performed to note that the sign-off
status has been received on each of the agents in question:

>emcli get_signoff_status

Showing for each job

Job Name Status Total Agents Started Ended

-------- ------ ------------ ------- -----

CLEANUP_12CR2_AGNTS Success 2 2013-11-21 17:08:30 CST
2013-11-21 17:08:44 CST

Note that the sign-off doesn't remove the old agent home. We will now do this through an EM CLI host
command once logged in:
>emcli execute_hostcmd –cmd=”rm -rf /u01/oracle/agent12c/core/12.1.0.2.0” -targets="remote-
host:host"

This command will remove the previous, unused directory home from each host it is run against.
The goal of these examples is to show you very simple commands that performed several usually manual steps,

thus easing the demands on the administrator. Anyone who reads through the actual steps that were required to be
performed by the DBA on six servers, including verifying success and then removing the previous installation, will
realize the power behind the EM CLI job-submission option.

Export/Import Capabilities for Information Publisher Reports
BI Publisher (BIP) now comes standard as an integrated part of Release 4 (12.1.0.4). With this change, Information
Publisher Reports (IP Reports) are still supported, but migration to BIP is recommended.

Any report requires significant development time, and the ability to export and import it through the EM CLI is
incredibly beneficial; this is no different than for your existing IP Reports. For this example, we will first list then export
an IP Report named “Exadata Summary Report”:

>emcli get_reports –owner="KPOTVIN"

From the list of reports owned by “KPOTVIN,” we can choose one named EXADATA_SUMMARY_REPORT and
export it:

>emcli export_report -title="Exadata Summary Report" -owner="KPOTVIN" -output_file="$OMS_HOME/
reports/exadata_summary.xml"

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

117

This report will now be found in the $OMS_HOME/reports directory, and the file will be named exadata_
summary for easy identification.

To then import this report, the following is done:

>emcli import_report -files="$OMS_HOME/reports/exadata_summary.xml"

Exporting a BIP report is currently performed via the console and by exporting the files to local files.

Store Definition Library in Software Library
Storing definition files in the software library makes complete sense. No one wants to continue to create and retain
multiple copies of the same definition file (a.k.a. response file). By implementing a software library, there is less
concern about version control as this can be managed as part of the feature.

Creating a definition file is a simple process:

>emcli get_procedures -type=DBPROV

This will create a list of all provisioning procedures that can then be used to create a definition file; this will be
used with a deployment or provisioning verb call. This definition file contains all targets and procedural steps. To
use it as a “shortcut” versus writing out all of the tasks (like a response file eliminates similar work for a database
configuration assistant [dbca] silent run) saves time and extra effort.

You can “describe” or list out the commands and information to an output file with the following command:

>emcli describe_procedure_input -procedure=B35E10B1F427B4EEE040578CD78179DC > newoutputfile.
properties

This command will create a file named “newoutputfile.properties” in the software library directory based on the
procedure GUID listed in the command.

You can then open the file with VI or another editor, make whatever changes required for targets and so forth,
and save it; next, upload it back into the software library:

>emcli save_procedure_input –name=Prov_db12cR1_temp -procedure="DB12cR1 Template" -owner="KPOTVIN"
-input_file=data:$OMS_HOME/sw_files/ newoutputfile.properties

The file is now uploaded to the software library and can be downloaded for future use, or can simply be used as is.

Oracle Extensibility Exchange
Oracle’s Extensibility Exchange is a cloud repository (library) to which Oracle and partners have contributed scripts,
plug-ins, and other Enterprise Manager entities for download. The Extensibility Exchange can be accessed via a web
browser at the following link (Figure 7-12): http://www.oracle.com/goto/emextensibility.

http://www.oracle.com/goto/emextensibility

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

118

The benefit of having the Extensibility Exchange is similar to that of having a provisioning library, just on a global
scale. It allows EM12c professionals to share their knowledge and expertise with the rest of the OEM community. It
offers solutions to those in the community, saving them time and resources that would have been otherwise wasted
recreating code that others have already spent valuable time originating.

The desire to reuse Enterprise Manager entities, such as scripts, plugins, and patch plans, quickly became
apparent, and there were requests for this functionality from a number of power users. No one likes to reinvent
the wheel, and with the Extensibility Exchange the EM12c software library is taken to the next level. The source of
available entities is no longer local to the EM12c repository, but is now available to anyone with browser access;
contributions from the power users throughout the Oracle community are also available.

The future of the Extensibility Exchange is wide open with the release of version 2.0 in June 2014. As Enterprise
Manager’s features are enhanced, new offloading and export features are discovered, along with new scripting
methods. As we do more and more within the EM CLI, we plan on seeing more Jython and JSON scripts that will
encompass most of what we now do with the database environment. However, with the move to mobile, who knows
what will be dreamed up with ADF (Application Development Forms) and APEX, all supported within EM12c and
scripted as part of deployment through the EM CLI. Soon it won’t just be plug-ins and scripts, but possibly full suites
of monitoring entities that are available through the Extensibility Exchange.

To gain a better understanding of the features, we can log into the Extensibility Exchange via a web browser. The
header on the page offers the user great information on upcoming Enterprise Manager training and informational events
(Figure 7-13). There is also a link if one wants to proceed to the site to gain more information or register for an event.

Figure 7-12. Main page for Oracle’s Extensibility Exchange, version 2.0

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

119

Categories, ordered by popularity and number of entities, are shown in Figure 7-14 in the event header.

Figure 7-14. Search bar and recent updates list of plug-ins and entities created by both Oracle and partners on the
Extensibility Exchange website

Figure 7-13. Header page with event information and top categories on the Extensibility Exchange website

The search option is both helpful and easy to use. Simply type in a keyword and it goes to work to find all entities
in the Exchange that have that term in its title.

Instead of doing a search, you can scroll to the bottom of the page to peruse the recently updated extensions in
the library by Oracle, by partners, and/or by “tags,” as shown in Figure 7-15. Tags are search words that can be used to
offer a link button that will take you quickly to all entities or plug-ins that meet that “tagged” search.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

120

In Figure 7-16, we are going to do a simple search for “fusion.”

Figure 7-15. Tagged searches on the Extensibility Exchange website, along with entity counts for each tagged
search term

Figure 7-16. Search bar view for the Extensibility Exchange, along with quick search results in response to
keyword entry

As you can see, the keyword “fusion” shows results immediately. For our example, we’ll choose “Oracle Fusion
Applications.”

This takes us to the page for the entities that match our search (Figure 7-17), and we can then chose from the
dropdown:.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

121

Extensibility Exchange
By clicking on the first of the extensions found in a search, we are taken to the content details for the Fusion ION
Accelerator plug-in (Figure 7-18).

Figure 7-18. View of access page for the Fusion ION Accelorator plug-in, which displays documentation, download,
reporting, and bookmark links

Figure 7-17. Secondary search page from keyword entries that shows list of available plug-ins (i.e., “entities”) to view or
download

Notice that you can read the full documentation on the plug-in (Explore Plug-in), download it, report a problem
if one is experienced with the plug-in, or bookmark it for later reference via a web browser.

For the future enhancement of the site, also remember to come back and rate the plug-in if you do end up
downloading it. It’s very valuable to other users of the Extensibility Exchange to receive feedback.

If you choose to download a plug-in and it’s from Oracle, it will take you to Oracle or to the partner’s page to
access the download options.

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

122

Classic View
Now, if you are more comfortable with the previous version of Extensibility Exchange, you do have the option to click
on the Classic tab at the top of the page, which will revert it to the previous iteration of this great website. It’s common
to need time to become accustomed to a new application user interface, so I recommend you use the new interface
for a while before choosing to revert.

Development Resources
If your environment possesses metric extensions, plug-ins, and other valuable additions to your EM12c environment
and you’d like to learn how to contribute them to the Exchange Extensibility repository, there is a Development
Resources page to explain how. This page includes downloads for kits, guides, white papers, and screenwatches, all of
which help simplify the process of developing and submitting entities.

Contribute
Once you have completed proper development of an entity to submit to the Extensibility Exchange, the form on
the Contribute tab must be filled out. Once this is completed, click Create. Oracle will proceed to validate your
contribution and then add it to the Extensibility Exchange catalog.

At a Glance
The last tab is extremely important, despite its placement on the Exchange Extensibility page. This At a Glance page
(Figure 7-19) gives a quick view of which plug-in offers what functionality.

Figure 7-19. The “At a Glance” tab and the impressive comparison feature for plug-ins

It also offers a great search feature, including filters and comparison options for the different plug-ins (Figure 7-20).

Chapter 7 ■ Using the software Library and oraCLe extensibiLity exChange

123

In this figure we perform a quick search for EMC plug-ins, and two provide “out-of-the-box” reports, so if this is a
requirement of the plug-in you need, this page would quickly pinpoint you to the desired entities.

Summary
The software library is your own internal repository for entities used by the EM12c environment. The ability to also
have a global software library in the Extensibility Exchange offers the Enterprise Manager the ability to share entities
that they would have previously had to design themselves.

In this chapter, we discussed why you are required to have the software library configured before you’re able to
use many of the features of the EM12c console, including provisioning and EM CLI scripting features. We demonstrate
how to configure some more-advanced features and how they benefit your day-to-day demands.

We also go into the powerful Extensibility Exchange website. This is Oracle’s library of entities that allow Oracle,
Oracle partners, and power users just like you to develop, test, ensure quality of, and then share entities with the
Oracle community to the benefit of everyone. Providing everyone a one-stop location to view, try out, and then review
plug-ins, metric extensions, and future entities is an incredible way the Oracle community can share its wealth of skills
in the industry with each other.

Figure 7-20. Distinct search results and comparisons of “EMC” plug-ins, displaying which plug-ins have out-of-the-box
reports included

125

Chapter 8

Sample EM CLI Scripts

Throughout this book we’ve shown you how to use EM CLI to manage your OEM environment, including using the
command line,. I scripting option, which uses JSON and Jython.

This chapter contains some sample scripts for you to adapt to your environment.

Section 1: Function Library and Shell Scripts

Section 2: EM CLI and Veritas Cluster Services

Section 3: Essential OMS Server-Management Scripts

Section 4: EM CLI Scripting and Interactive Scripts

Section 1: Function Library and Shell Scripts
Chapter 5 explored various ways you could apply EM CLI with shell scripts. This section expands on those solutions
and provides you with sample scripts you can use in your environment.

The samples in this chapter have been edited for clarity, mostly by removing formatting options for echo
statements and redirections to log files. Two of the most important things you must provide in your scripts are clear
instructions for attended online use and complete log files for unattended execution through Cron or another job
scheduler like OEM.

Command-Line Inputs
The use of validated input values provides scalability and ease of use. Before you deploy your scripts, consider adding
and testing this important capability.

Nearly all of the scripts in this section require one or more input variables at the command line, often simply
the target name. Variables passed at the command line are represented in the body of the script in the order they
appear on the command line. The executable file is represented as $0, the first string after that is $1, and so forth. For
example, you could have an entry like this:

./oem_target_blackout.sh orcla

This example translates variable $0 as the script name for oem_target_blackout.sh and $1 for the database
name. The logic within the scripts should verify that required command-line inputs are not null or that they exit with
a clear error statement telling the user or the log file what went wrong. You’ll see several examples of this technique in
the sample scripts.

Chapter 8 ■ Sample em ClI SCrIptS

126

Evidence of Life
Every shell script you develop should be executable at the command line for testing one-off runs, and should also
be executable through a scheduler like Cron without any modification. Resist the temptation to use two versions of
the same script to enable both modes of operation. This can turn into a maintenance nightmare as the complexity of
your environment grows. Instead, test for a live user session by looking at the nature of the session that is calling the
script. At run-time, a file system entry for each terminal session will be made in the /dev directory for each live user
connection. TTY is an old term for Teletype Session—your terminal session. Cronned executions aren’t called from a
terminal, of course, so there is no /dev/tty associated with those executions.

Test for the existence of a TTY session with an if statement and set your runtime variables accordingly. For
instance, if your script requires that the database name be passed on the command line, you will respond to missing
inputs differently for an attended session than you would for a cronned/scheduled session:

if [${1} -eq 0]; then
 if tty -s; then
 read -p "Please provide the name of the database: " thisSID
 else
 echo "The database name was not provided on the command line" >>runtime.log
 exit
 fi
fi

This type of session checking was removed from the example scripts for clarity.

Sample Function Library
This function library is sourced by many of the shell scripts found in the remainder of this section. It can also be
sourced for immediate use in a terminal session, or sourced for use in any other shell script.

Sample Script: emcli_functions.lib
#!/bin/sh
#/* vim: set filetype=sh : */
==
File: emcli_functions.lib
Purpose: Shell script functions for common emcli tasks
File permission: This file is sourced and never executed
Echo statements: Formatting for echoed statements has been removed for this
scripting sample to keep the logic clear. Be kind to your
users and add white space liberally in your own copy
==
The SysmanPassword variable is used in a single place to call your proprietary
password encryption solution, or in a single location to record the SYSMAN
password for use in your scripts and within the functions in this library.
It is strongly recommended that you implement a more secure solution such as encryption/decryption
through Java or another tool
--

SysmanPassword=Sup3r_S3cr3t_PASSWORD

Chapter 8 ■ Sample em ClI SCrIptS

127

==
General Functions
==

function CleanUpFiles {
--
CleanUpFiles is called at the beginning of every script to ensure that older
copies of temporary workfiles are removed to start fresh
CleanUpFiles is also called by the ExitCleanly function to clean up the
--
files when script execution is complete
..

[$WORKFILE] && rm -f ${WORKFILE}
[$WORKFILE01] && rm -f ${WORKFILE01}
[$WORKFILE02] && rm -f ${WORKFILE02}
}

function ExitCleanly {
--
ExitCleanly is called whenever a script is instructed to exit, whether the
script ended in success or failure. A clean server is a happy server
--

echo "Ending emcli session ..."
emcli logout
CleanUpFiles
echo ""
exit 0
}

function GetAgentNames {
--
As it says in the echo statement, GetAgentNames can be used to list all
targets of the oracle_emd target type known to OEM
--

emcli login -user=sysman -pass="${SysmanPassword}"
echo "Getting the names of all EM agents from OMS ..."
emcli get_targets | grep oracle_emd | sort -u | awk '{ print $4 }'
}

function GetTargetName {
--
This function should be used by any script or function to find
the exact of a database. If the database isn't known to OEM it returns a
clear failure message.
You could easily adapt GetTargetName to find host or agent names

Chapter 8 ■ Sample em ClI SCrIptS

128

--
Calling script must pass the database name as variable thisSID
--

emcli login -user=sysman -pass="${SysmanPassword}"
echo "Getting the exact target name for $thisSID from OMS ..."
if [`emcli get_targets -targets="oracle_database" | grep -i ${thisSID} | wc -l` -gt 0]; then
 thisTARGET=`emcli get_targets -targets="oracle_database" -format="name:csv" \
 | grep -i ${thisSID} | cut -d, -f4`
 echo "\t${thisTARGET}"
else
 echo "Sorry, ${thisSID} database is not in the OEM repository"
 ExitCleanly
fi
}

==
Blackout Functions
==

function CreateBlackout {
--
This function was illustrated in Chapter 5 as a method of creating a six-hour
long blackout on a database target. Adapt the timezone for your environment.
Consider writing a similar function of entire hosts or an oracle_sys target
--
Calling script must provide a name for the blackout as BO_NAME and the
database target name as thisSID
--

GetTargetName

echo "Creating blackout named '${BO_NAME}' ..."

if [`emcli get_blackouts | grep ${BO_NAME} | wc -l` -gt 0]; then
 echo "Found an existing blackout named ${BO_NAME}"
 echo "That blackout will be stopped and deleted prior to starting the new one"
 emcli stop_blackout -name="${BO_NAME}"
 emcli delete_blackout -name="${BO_NAME}"
fi

emcli create_blackout -name="${BO_NAME}" \
 -add_targets=${thisTARGET:oracle_database \
 -schedule="duration::360;tzinfo:specified;tzregion:America/Los_Angeles" \
 -reason="Scripted blackout for maintenance or refresh"

sleep 5

echo "Getting blackout information for '${BO_NAME}' ..."
emcli get_blackout_details -name="${BO_NAME}"
}

Chapter 8 ■ Sample em ClI SCrIptS

129

function EndBlackout {
--
This function was illustrated in Chapter 5 as a method of stopping and deleting
an OEM blackout.
--
Calling script must provide a name for the blackout as BO_NAME
--

GetTargetName

echo "Stopping blackout '${BO_NAME}' ..."
emcli stop_blackout -name="${BO_NAME}"

echo "Deleting blackout '${BO_NAME}' ..."
emcli delete_blackout -name="${BO_NAME}"
}

==
Agent Synchronization
==

function ResyncUnreachableAgents {
--
This function requires no input values to resync all agents found to be in
an Unreachable state.
#
Underlying conditions may exist that prevent an individual agent from
being resync'd, so check agent status after executing this function.
Only one attempt will be made to resync each agent to prevent an infinite
loop when problem agents are encountered
#
This function and SecureAllAgents are written for execution from the command
line by sourcing this library file and then calling the function by name
#
Examples:
. emcli_functions.lib
ResyncUnreachableAgents
#
. emcli_functions.lib
SecureAllAgents
--

WORKFILE01=/tmp/oem_resyncagents.tmp

CleanUpFiles

emcli login -user=sysman -pass="${SysmanPassword}"

Chapter 8 ■ Sample em ClI SCrIptS

130

echo "Getting the target name for unreachable agents ..."
if [`emcli get_targets -targets="oracle_emd" | grep Unreach | awk '{ print $5 }' | wc -l` -gt 0];
then
 echo "Creating a list of agents in an Unreachable state"
 emcli get_targets -targets="oracle_emd" | grep Unreachable | awk '{ print $5 }' >${WORKFILE01}
 if [`cat ${WORKFILE01} | wc -l` -gt 0]; then
 for thisAGENT in `cat ${WORKFILE01}`; do
 echo "Attempting to resync ${thisAGENT}"
 echo "This will take quite a while, so please be patient"
 emcli resyncAgent -agent="${thisAGENT}"
 done
 else
 echo "There are currently no unreachable agents"
 fi
else
 echo "There are currently no unreachable agents"
fi

ExitCleanly
}

function SecureAllAgents {
--
As the name suggests, this function will secure all your agents using the
preferred credentials for their host.
--

WORKFILE01=/tmp/oem_secure_agents.tmp

CleanUpFiles

emcli login -user=sysman -pass="${SysmanPassword}"

emcli get_targets | grep oracle_emd | sort -u | awk '{ print $4 }' >${WORKFILE01}

emcli secure_agents -agt_names_file=${WORKFILE01} -use_pref_creds

ExitCleanly
}

==
User Account Credentials
==

function SetDBUserCredential {
--
This function will set the normal database preferred credentials to use the
SYSMAN password defined at the top of this file.

Chapter 8 ■ Sample em ClI SCrIptS

131

--
Calling script must provide the database name as thisSID
--

emcli set_credential \
 -target_type=oracle_database \
 -target_name=${thisSID} \
 -credential_set=DBCredsNormal \
 -columns="username:dbsnmp;password:${SysmanPassword};role:Normal"
}

function SetUserCredential {
--
This function will execute the SetDBUserCredential from the command line
--
You could supplement the failure logic with a read statement to prompt
for the database name
--

if [${#1} -gt 0]; then
 thisSID=${1}
 SetDBUserCredential
else
 echo "The database name was not set on the command line"
 echo " syntax: SetDBUserCredential [database name]
 exit 1
fi
}

Function-Related Shell Scripts
The scripts in this section call or rely on the function described earlier. In each case, the function library is sourced,
input values from the command line are evaluated, and key input parameters needed by the functions are set. Notice
the simplicity of these scripts. All of the “serious” logic exists in the function library, so when a new script is created
you can limit your debugging to just the new code.

Sample Script: emcli_start_blackout.ksh

#!/bin/ksh
Thus script is written for Korn shell. You must adapt the 'read' statements to use Bash
#
==
File: emcli_start_blackout.ksh
Purpose: Create and initiate an OEM blackout
Parameters: Database name
==
Enter the path to your shell script repository for OEM
FUNCTION_LIB=< Your shared script directory>/emcli_functions.lib

WORKFILE is one of several file name variables cleaned up by the function library
export WORKFILE=/tmp/create_em_blackout_$PPID.lst

Chapter 8 ■ Sample em ClI SCrIptS

132

--
Run-time Procedure
--
Source the function library
. ${FUNCTION_LIB}

Verify that SID was passed on command line
if [${#1} -eq 0]; then
 if tty -s; then
 read thisSID? "Please provide the name of the database: "
 else
 echo "The database name was not provided on the command line"
 ExitCleanly
 fi
 read thisSID?"Enter the name of the database to be monitored: "
else
 thisSID=`print $@ | awk '{print$NF}' | tr '[A-Z]' '[a-z]'`
fi

BO_NAME=scripted_blackout_${thisSID}

CleanUpFiles
CreateBlackout
ExitCleanly

Sample Script: emcli_stop_blackout.ksh

#!/bin/ksh
==
File: emcli_stop_blackout.ksh
Purpose: Stop and delete a named OEM blackout
Parameters: Database name
==
Enter the path to your shell script repository for OEM
FUNCTION_LIB=< Your shared script directory>/emcli_functions.lib

WORKFILE is one of several file name variables cleaned up by the function library
export WORKFILE=/tmp/create_em_blackout_$PPID.lst

--
Run-time Procedure
--
Source the function library
. ${FUNCTION_LIB}

Verify that SID was passed on command line
if [${#1} -eq 0]; then
 if tty -s; then
 read thisSID?"Please provide the name of the database: "
 else
 echo "The database name was not provided on the command line"
 ExitCleanly

Chapter 8 ■ Sample em ClI SCrIptS

133

 fi
 read thisSID?"Enter the name of the database to be monitored again: "
else
 thisSID=`print $@ | awk '{print$NF}' | tr '[A-Z]' '[a-z]'`
fi

BO_NAME=scripted_blackout_${thisSID}

CleanUpFiles
EndBlackout
ExitCleanly

Section 2: EM CLI and Veritas Cluster Server
Veritas Cluster Servers (VCS)1 are robust fail-over mechanisms deployed as an alternative to RAC One-Node. With VCS,
critical resources like database instances are identified and monitored. If a failure is noticed, VCS will unmount drives
containing the binaries and database files, remount them on the other node of a cluster, and restart the services.

OEM agents must be installed on a static drive on each host within the cluster. They never fail-over with the VCS
resource group because they are strictly associated with a single host. This poses a problem with VCS fail overs. How
do you keep track of the targets when the database, its Oracle home, and all of its files move to another host?

Tip ■ many consider it a best practice on VCS to install the agents on the virtual hostname. refer to “how to Install 12c
agent on Virtual hostname / Virtual Ip address?” (Doc ID 1469995.1) for details.

The EM CLI relocate_targets verb transfers responsibility for target tracking to another agent when the targets
are relocated by the VCS. This section describes how that process works before showing you the shell script itself.

Program Logic
This script gathers data from the environment and decides which targets are moving and which agents are affected.
This script’s scalability and flexibility come from queries of three systems: the VCS cluster, the OEM repository, and the
EM agent. Note that syntax is slightly different for relocating responsibility between agents for database and listener
targets. We’ll generate a separate set of workfiles for generating the EM CLI argfile that actually performs the work.

Veritas Cluster Server
VCS clusters are organized into groups that drill down to the individual database and listener targets. The hosts in the
cluster are at the highest level. VCS heartbeats monitor one or more critical resources on the active node and when
necessary relocate all the members2 of a group from the current ONLINE node to the other node that is currently
OFFLINE. We’ll use this knowledge to determine the host and agent names we need to manage.

1http://www.symantec.com/cluster-server.
2Members on a database server typically include databases and listeners using the same Oracle home. The drives related to these
targets are all members of the group. Filesystems containing the Oracle base, the archive destination, the oradata filesystems, and
other related data are all included in the fail-over group.

http://www.symantec.com/cluster-server

Chapter 8 ■ Sample em ClI SCrIptS

134

Since EM agents can only monitor targets that run from the same host (or Oracle cluster), we need to carefully
determine which targets are related to the VCS group being failed-over. Those database and listener targets are the
only targets eligible for relocation through EM CLI. We’ll use a second set of VCS query results to decide which EM
targets need to be relocated.

For example, let’s say you have two Oracle installations, each with their own Oracle base filesystem. Each base, or
home, contains all the files required to support its own targets, of course, and many databases and listeners may use
those homes. They are all members of one fail-over group. Let’s say the groups are named QUAL and TEST.

The QUAL group has one database named alexis_q with a listener named LSNRQ.•	

TEST group has three databases, alexis_t1, alexis_t2, and alexis_t3, and a shared listener •	
named LSNRT.

Alexis_q database is identified as the critical resource for the QUAL cluster group.•	

All three databases in the TEST cluster group are identified as “critical resources” in the TEST •	
cluster group.

If VCS does not receive a response back from its heartbeat against the alexis_q, all the resources in the QUAL
cluster group will fail-over to the other node.

If any of three databases in the TEST node becomes unresponsive, everything on that node, including the healthy
databases, will be restarted by VCS on the other node.

A VCS relocation often takes only a moment or two while the healthy members of the resource group
(other databases sharing the binaries and any related listeners) are brought down, filesystems are unmounted and
then re-mounted, and finally all the resources are brought up. Manual intervention is not required.

Oracle Enterprise Manager
Databases and listeners on either host may have been ignored, dropped, or simply never discovered in Enterprise
Manager, so there’s nothing to change in OEM. We’ll check both the EM repository and the local agent to decide
which targets need to be relocated.3

In this example, only databases alexis_q and alexis_t1 are configured for monitoring in OEM. The EM agent
knows about all of them, of course, but OEM monitoring and metrics collection only apply to the first two and
their respective listeners. As far as OEM is concerned, we can ignore the other two databases completely. After
the relocation is complete, the agent on the new node will discover alexis_t2 and alexis_t3 as part of its own host
discovery. The agent on the other node also performs regular searches for new targets, so it will essentially forget
about the unmonitored databases. The EM CLI command will transfer its knowledge about the history, metric
collections, and preferred credentials for alexis_q and alexis_t1. That knowledge transfer is the purpose of this
exercise, after all.

Implementation
The emcli_relocate_target_vcs.ksh script is executed without command-line input parameters by VCS after all the
other fail-over tasks are complete, including restarting the databases and listeners:

Sample Script: emcli_relocate_target_vcs.ksh

3In spite of its title, relocate_target verb does not physically relocate any targets. Its sole purpose is to transfer monitoring and
metrics collection from one agent to another.

Chapter 8 ■ Sample em ClI SCrIptS

135

#!/bin/sh
==
File: emcli_relocate_target_vcs.sh
Purpose: Relocate OEM agent for monitored VCS targets
Parameters: VCS group name required
Note: Must be run as part of VCS startup to run after fail-over
to the secondary host
==
Environment tests
--
if [${#1} -eq 0]; then
 echo "You must pass the VCS cluster name on the command line\n\n"
 exit 1
fi

export VCSBIN=< Set to the bin directory for your VRTSvcs executables >

if [! -d ${VCSBIN}]; then
 echo "Could not locate the Veritas executables in ${VCSBIN}"
 export VCSBIN=""
 exit 1
fi

--
Variables section
--
SCRIPTNAME=`basename ${0}`
LOCAL_HOST=`hostname | cut -d"." -f1`

--
Set the ORACLE_HOME to the agent's base directory
EM agent installs with its own jdk, so reference it in this script
--
export ORACLE_HOME=/u01/oracle/product/agent12c
export EMCTL_HOME=${ORACLE_HOME}/agent_inst/bin
export JAVA_HOME=${ORACLE_HOME}/core/12.1.0.3.0/jdk/bin
--
The settings shown assume EM CLI binaries reside in the agent O/H
--

export EMCLI_HOME=${ORACLE_HOME}/emcli

Set paths to match the values set above

export PATH=${VCS_BIN}:${PATH}
export PATH=${ORACLE_HOME}:${ORACLE_HOME}/bin:${PATH}
export PATH=${EMCTL_HOME}:${PATH}
export PATH=${JAVA_HOME}:${PATH}
export PATH=${EMCLI_HOME}:${PATH}

export PATH=${PATH}:.
export LD_LIBRARY_PATH=${ORACLE_HOME}/lib:/lib:/lib64:/usr/lib:/usr/lib64

Chapter 8 ■ Sample em ClI SCrIptS

136

Set fully-qualified paths to the executables here

export EMCLI=${EMCLI_HOME}/emcli
export EMCTL=${EMCTL_HOME}/emctl
export JAVA=${JAVA_HOME}/java

export IBM_JAVA_OPTIONS=-Djava.net.preferIPv4Stack=true

Required setting for an AIX environment

export AIXTHREAD_SCOPE=S

--
File name variables - keep these in the same order as CleanUpFiles function
--
Lists will be collected from each of source as listed and distilled into the
final EM CLI script
#
emcli relocate_targets verb syntax is slightly different for databases and
listeners so we'll collect them in separate lists of targets for processing
--

VCS_DATABASES=/tmp/RelocateTargetDatabases_VCS.lst
VCS_LISTENERS=/tmp/RelocateTargetListeners_VCS.lst

EMCLI_DATABASES=/tmp/RelocateTargetDatabases_EMCLI.lst
EMCLI_LISTENERS=/tmp/RelocateTargetListeners_EMCLI.lst

EMCTL_DATABASES=/tmp/RelocateTargetDatabases_EMCTL.lst
EMCTL_LISTENERS=/tmp/RelocateTargetListeners_EMCTL.lst

OEM_DATABASES=/tmp/RelocateTargetDatabases_OEM.lst
OEM_LISTENERS=/tmp/RelocateTargetListeners_OEM.lst

MOVING_DATABASES=/tmp/RelocateTargetDatabases_Moving.lst
MOVING_LISTENERS=/tmp/RelocateTargetListeners_Moving.lst

EMCLI_SCRIPT=/tmp/RelocateTarget_emcli_script.lst

#===
Functions
#===

function CleanUpFiles {
--
[$VCS_DATABASES] && rm -f ${VCS_DATABASES}
[$VCS_LISTENERS] && rm -f ${VCS_LISTENERS}
[$EMCLI_DATABASES] && rm -f ${EMCLI_DATABASES}
[$EMCLI_LISTENERS] && rm -f ${EMCLI_LISTENERS}
[$EMCTL_DATABASES] && rm -f ${EMCTL_DATABASES}
[$EMCTL_LISTENERS] && rm -f ${EMCTL_LISTENERS}

Chapter 8 ■ Sample em ClI SCrIptS

137

[$OEM_DATABASES] && rm -f ${OEM_DATABASES}
[$OEM_LISTENERS] && rm -f ${OEM_LISTENERS}
[$MOVING_DATABASES] && rm -f ${MOVING_DATABASES}
[$MOVING_LISTENERS] && rm -f ${MOVING_LISTENERS}
[$EMCLI_SCRIPT] && rm -f ${EMCLI_SCRIPT}
}

function ExitCleanly {
--
CleanUpFiles
exit 0
}

function ExitDirty {
--
CleanUpFiles
exit 1
}

function ListNicely {
--
for thisLINE in `cat ${thisFILE}`; do
 echo " ${thisLINE}"
done
}

--
Runtime procedure
--
Time stamp for the VCS log file
--
echo "\n\n\n---"
date
echo "---\n\n\n"

CleanUpFiles

 # ---
Gather VCS values for the members of the cluster
--
Test whether VCS recognizes the cluster name you passed at the command line
by checking for the existence of node in OFFLINE mode. From that knowledge
we can get the name of the HAGROUP and then associate the offline and online
nodes with the appropriate variable based on their status after the
VCS fail-over

if [`sudo ${VCSBIN}/hastatus -summary | grep OFFLINE | grep ${1} | wc -l` -eq 0]; then
 echo "\n\nThe VCS cluster ${1} does not exist on ${LOCAL_HOST}\n\n"
 ExitDirty

Chapter 8 ■ Sample em ClI SCrIptS

138

else
 export HAGROUP=`sudo ${VCSBIN}/hastatus -summary | grep OFFLINE | grep ${1} | awk '{ print $2 }'`
 export OFFLINE_NODE=`sudo ${VCSBIN}/hastatus -summary | grep OFFLINE | grep ${HAGROUP} | awk
'{ print $3 }'`
 if [`sudo ${VCSBIN}/hastatus -summary | grep ONLINE | grep ${HAGROUP} | wc -l` -gt 0]; then
 export ONLINE_NODE=`sudo ${VCSBIN}/hastatus -summary | grep ONLINE | grep ${HAGROUP} | awk
'{ print $3 }'`
 else
 export ONLINE_NODE=`sudo ${VCSBIN}/hastatus -summary | grep PARTIAL | grep ${HAGROUP} | awk
'{ print $3 }'`
 fi
fi

--
Echo those values for the log file
--
echo "\n\nVeritas Cluster names:"
echo " VCS group ${HAGROUP}"
echo " Active node after relocation ${ONLINE_NODE}"
echo " Offline node ${OFFLINE_NODE}"
echo " Local hostname ${LOCAL_HOST}"

--
Select the database and listener names associated with the HAGROUP
This list may not match the list of targets known to OEM on these hosts, so we'll compare
them later in the script
--
sudo ${VCSBIN}/hares -display -type Oracle | grep ${HAGROUP} | awk '{ print $1 }' >${VCS_DATABASES}
sudo ${VCSBIN}/hares -display -type Netlsnr | grep ${HAGROUP} | awk '{ print $1 }' >${VCS_LISTENERS}

if [`cat ${VCS_DATABASES} | wc -l` -gt 0]; then
 echo "\n\nVCS shows these databases in ${HAGROUP} group"
 thisFILE=${VCS_DATABASES}
 ListNicely
else
 echo "\n\nVCS has no databases associated with ${HAGROUP} group"
 ExitDirty
Fi

if [`cat ${VCS_LISTENERS} | wc -l` -gt 0]; then
 echo "\n\nVCS shows these listeners in ${HAGROUP} group"
 thisFILE=${VCS_LISTENERS}
 ListNicely
Else
 echo "\n\nVCS has no listeners associated with ${HAGROUP} group"
fi

if [${OFFLINE_NODE} == ${LOCAL_HOST}]; then
 echo "\n\nThe ${HAGROUP} group is located on the other side of the cluster"
 echo "This script must be run on the active node ${ONLINE_NODE}\n\n\n"
 ExitDirty
Fi

Chapter 8 ■ Sample em ClI SCrIptS

139

--
Get OEM agent names, including ports, for both nodes
Agents are always installed on a static file system and never fail over
--
NEW_EMD=`$EMCLI get_targets | grep ${ONLINE_NODE} | grep oracle_emd | awk '{print $NF }'`
OLD_EMD=`$EMCLI get_targets | grep ${OFFLINE_NODE} | grep oracle_emd | awk '{print $NF }'`

--
This string will be used several times during emcli script construction
--
EMCLI_AGENT_STRING=`echo "-src_agent=\"${OLD_EMD}\" -dest_agent=\"${NEW_EMD}\""`

echo "\n\nOEM names for the host targets related to this change:"
echo " Host after relocation ${NEW_EMD}"
echo " Local host name ${OLD_EMD}"

--
Create and distill lists of OEM targets
Not all targets are managed by OEM, so we need to get a list from the repository
that we'll compare with the list from VCS
--

$EMCLI get_targets | grep oracle_database | awk '{print $NF}' | sort -fu >${EMCLI_DATABASES}

echo "\n\nDatabase targets managed through OEM:"
thisFILE=${EMCLI_DATABASES}
ListNicely

$EMCLI get_targets | grep oracle_listener | awk '{print $NF}' | sort -fu >${EMCLI_LISTENERS}
echo "\n\nListener targets managed through OEM:"
thisFILE=${EMCLI_LISTENERS}
ListNicely

--
Now we'll do the same thing for targets known to the local EM agent. This list
may include targets ignored or unpromoted in the repository, so we'll treat the
agent list as a better choice. If the local agent has no targets we'll use
the full list from the repository
--

$EMCTL config agent listtargets | grep oracle_database | cut -d"[" -f2 | cut -d, -f1 | sort -fu
>${EMCTL_DATABASES}
echo "\n\nLocal database targets currently associated with ${NEW_EMD}:"
thisFILE=${EMCTL_DATABASES}
ListNicely

$EMCTL config agent listtargets | grep oracle_listener | cut -d"[" -f2 | cut -d, -f1 | sort -fu
>${EMCTL_LISTENERS}
echo "\n\nLocal listener targets currently associated with ${NEW_EMD}:"
thisFILE=${EMCTL_LISTENERS}
ListNicely

Chapter 8 ■ Sample em ClI SCrIptS

140

--
The longer list from the repository was created in case the local agent did not
contain any targets. We'll replace the OMR list with the targets known to the
local agent if any exist
--

if [`cat ${EMCTL_DATABASES} | wc -l` -gt 0]; then
 cat /dev/null >${OEM_DATABASES}
 for thisTARGET in `cat ${EMCLI_DATABASES}`; do
 if [`cat ${EMCTL_DATABASES} | grep -i ${thisTARGET} | wc -l` -eq 0]; then
 echo "${thisTARGET}" >>${OEM_DATABASES}
 fi
 done
else
 mv -f ${EMCLI_DATABASES} ${OEM_DATABASES}
fi

--
Same process happens for the listeners
--

if [`cat ${EMCTL_LISTENERS} | wc -l` -gt 0]; then
 cat /dev/null >${OEM_LISTENERS}
 for thisTARGET in `cat ${EMCLI_LISTENERS}`; do
 if [`cat ${EMCTL_LISTENERS} | grep -i ${thisTARGET} | wc -l` -eq 0]; then
 echo "${thisTARGET}" >>${OEM_LISTENERS}
 fi
 done
else
 mv -f ${EMCLI_LISTENERS} ${OEM_LISTENERS}
fi

--
Compare the OEM target list with the Veritas members and build emcli scripts
--

if [`cat ${VCS_DATABASES} | wc -l` -gt 0]; then
 cat /dev/null >${MOVING_DATABASES}
 for thisITEM in `cat ${VCS_DATABASES}`; do
 cat ${OEM_DATABASES} | grep -i ${thisITEM} >>${MOVING_DATABASES}
 done
fi

cat /dev/null >${EMCLI_SCRIPT}

if [`cat ${MOVING_DATABASES} | wc -l` -gt 0]; then
 echo "\n\nThese database targets will be relocated"
 thisFILE=${MOVING_DATABASES}
 ListNicely

Chapter 8 ■ Sample em ClI SCrIptS

141

 for thisITEM in `cat ${MOVING_DATABASES}`; do
 EMCLI_TARGET_STRING=`echo "-target_name=\"${thisITEM}\" -target_type=\"oracle_database\""`
 echo "set_standby_agent ${EMCLI_AGENT_STRING} ${EMCLI_TARGET_STRING}" >>${EMCLI_SCRIPT}
 echo "relocate_targets ${EMCLI_AGENT_STRING} ${EMCLI_TARGET_STRING} -copy_from_src
-force=yes" >>${EMCLI_SCRIPT}
 done
else
 echo "\n\nNo database targets need to be migrated to ${NEW_EMD}"
fi

if [`cat ${VCS_LISTENERS} | wc -l` -gt 0]; then
 cat /dev/null >${MOVING_LISTENERS}
 for thisITEM in `cat ${VCS_LISTENERS} | sed 's/lsnr//'`; do
 cat ${OEM_LISTENERS} | grep -i ${thisITEM} >>${MOVING_LISTENERS}
 done
else
 echo "\n\nVCS has no listeners associated with ${HAGROUP} group"
fi

if [`cat ${MOVING_LISTENERS} | wc -l` -gt 0]; then
 echo "\n\nThese listener targets will be relocated to ${NEW_EMD}"
 thisFILE=${MOVING_LISTENERS}
 ListNicely
 for thisITEM in `cat ${MOVING_LISTENERS}`; do
 EMCLI_TARGET_STRING=`echo "-target_name=\"${thisITEM}\" -target_type=\"oracle_listener\""`
 echo "set_standby_agent ${EMCLI_AGENT_STRING} ${EMCLI_TARGET_STRING}" >>${EMCLI_SCRIPT}
 echo "relocate_targets ${EMCLI_AGENT_STRING} ${EMCLI_TARGET_STRING} -copy_from_src"
>>${EMCLI_SCRIPT}
 done
else
 echo "\n\nNo listener targets need to be migrated to ${NEW_EMD}"
fi

sleep 10

--
Show the emcli to the log file and then execute it with emcli argfile
--

if [`cat ${EMCLI_SCRIPT} | wc -l` -gt 0]; then
 echo "\n\nEMCLI script"
 cat ${EMCLI_SCRIPT}
 echo "\n\nEMCLI execution results"
 $EMCLI argfile ${EMCLI_SCRIPT}
fi

echo "\n\nThese targets are now tracked by the local OEM agent:\n"
$EMCTL config agent listtargets | grep -v "Cloud" | grep -v "reserved." | sort -fu
echo "\n\n\n"

ExitCleanly

Chapter 8 ■ Sample em ClI SCrIptS

142

Section 3: Essential Server-Management Scripts
The shell scripts in this section contain various uses of EM CLI, including backing up all configuration files on your
OMS server and then controlling the amount of space consumed by OMS log files.

Oracle has been very good about providing these services for files they deem critical. These scripts take care of all
the rest.

Configuration Backup Script
OEM backs up key OMS configuration files to the repository database. This script performs a file-level backup for
those files (and several others). One should use the same shared filesystem used by the Software Library as the site of
those backups.

This script only creates new backups when it determines that the source file has different content than its
backup copy. If a difference exists, the old backup is renamed with a .old suffix. This provides you with another
troubleshooting tool that can be particularly helpful after OMS patching. You can use file creation dates to determine
which configuration files changed and then run a quick diff command to find out how they changed:

Sample Script: backup_oms_configs.ksh
#!/bin/ksh

#===
Script name : backup_oms_configs.ksh
Calling args : None
Purpose : Backup key OMS configuration files
#===
Independent variables
#===
export OMS_HOME=<Set your OMS home directory here>
export BACKUP_DIR=<Set backup destination directory here>

#===
Functions
#===
function DashedBreak {
echo "\n--\n"
}

function PrepareBackupDir {

SOURCE_DIR=${OMS_HOME}/${DIRNAME}
TARGET_DIR=${BACKUP_DIR}/${DIRNAME}
STAGE_DIR=${TARGET_DIR}/staging
if [-d ${TARGET_DIR}]; then
 echo "\n\nFound directory ${TARGET_DIR}\n\n"
else
 echo "\n\nCreating directory ${TARGET_DIR}\n\n"
 mkdir -p ${TARGET_DIR}

Chapter 8 ■ Sample em ClI SCrIptS

143

fi

chmod 770 ${TARGET_DIR}

if [! -d ${STAGE_DIR}]; then
 mkdir ${STAGE_DIR}
fi

chmod 770 ${STAGE_DIR}
}

function BackupConfigFile {

sourceFILE=${SOURCE_DIR}/${FILENAME}
stageFILE=${TARGET_DIR}/staging/${FILENAME}
targetFILE=${TARGET_DIR}/${FILENAME}
oldFILE=${targetFILE}.old
oldZIP=${oldFILE}.zip

DashedBreak

if [-f ${sourceFILE}]; then
 if [-f ${targetFILE}]; then
 echo "\nBacking up ${sourceFILE}\n"
 cp -f ${sourceFILE} ${stageFILE}
 if [`diff ${stageFILE} ${targetFILE} | wc -l` -gt 1]; then
 echo "\n\tExisting backup file will be renamed and gzipped\n"
 if [-f ${targetFILE}]; then
 ## Get rid of older copies of both files
 [$oldZIP] && rm -f ${oldZIP}
 [$oldFILE] && rm -f ${oldFILE}
 ## Rename and gzip the latest backup copy
 echo "\tRenaming the existing backup file\n"
 mv ${targetFILE} ${oldFILE}
 echo "\tGzipping that copy\n"
 gzip -f ${oldFILE} --fast
 chmod 600 ${oldZIP}
 fi
 echo "\nBacking up ${sourceFILE}\n"
 mv ${stageFILE} ${targetFILE}
 chmod 640 ${targetFILE}
 echo "\n\tNew backup file moved into place\n"
 else
 echo "\n\tThe current copy of ${FILENAME} is identical to the backup copy\n"
 rm -f ${stageFILE}
 fi
 else
 echo "\n\tMaking a copy of ${sourceFILE}\n"
 cp ${sourceFILE} ${targetFILE}
 fi
 echo "\n\t${sourceFILE} does not exist on this server\n\n"

Chapter 8 ■ Sample em ClI SCrIptS

144

fi
chmod 640 ${targetFILE}

echo "\n\tFinished\n\n"
}

===
Run-time Procedure
===

echo "\nBackup directories and contents before processing\n\n"
ls -lARp ${BACKUP_DIR} | grep -v "^total"

DashedBreak

--
Script sets the directory name and then lists each file
subject to backup. The functions turn the values set as DIRNAME
and FILENAME into source and target names for processing
--

FILENAME=access.conf
 BackupConfigFile

FILENAME=mod_osso.conf
 BackupConfigFile

FILENAME=oracle_apache.conf
 BackupConfigFile

FILENAME=httpd.conf
 BackupConfigFile

FILENAME=ssl.conf
 BackupConfigFile

FILENAME=mod_oc4j.conf
 BackupConfigFile

FILENAME=dms.conf
 BackupConfigFile

--

DIRNAME=Apache/jsp/conf
 PrepareBackupDir

FILENAME=ojsp.conf
 BackupConfigFile

Chapter 8 ■ Sample em ClI SCrIptS

145

--

DIRNAME=Apache/modplsql/conf
 PrepareBackupDir

FILENAME=cache.conf
 BackupConfigFile

FILENAME=plsql.conf
 BackupConfigFile

FILENAME=dads.conf
 BackupConfigFile

--

DIRNAME=Apache/oradav/conf
 PrepareBackupDir

FILENAME=oradav.conf
 BackupConfigFile

FILENAME=moddav.conf
 BackupConfigFile

--

DIRNAME=datadirect/lib
 PrepareBackupDir

FILENAME=krb5.conf
 BackupConfigFile

FILENAME=JDBCDriverLogin.conf
 BackupConfigFile

--

DIRNAME=dsa
 PrepareBackupDir

FILENAME=dsa.conf
 BackupConfigFile

--

DIRNAME=dcm/config
 PrepareBackupDir

FILENAME=dcm.conf
 BackupConfigFile

Chapter 8 ■ Sample em ClI SCrIptS

146

--

DIRNAME=dcm/config/plugins/apache
 PrepareBackupDir

FILENAME=httpd.conf
 BackupConfigFile

--

DIRNAME=diagnostics/config
 PrepareBackupDir

FILENAME=logloader.xml
 BackupConfigFile

--

DIRNAME=iaspt/conf
 PrepareBackupDir

FILENAME=iaspt.conf
 BackupConfigFile

--

DIRNAME=j2ee/home/application-deployments/IsWebCacheWorking
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

--

DIRNAME=j2ee/home/application-deployments/portletapp
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

FILENAME=orion-application.xml
 BackupConfigFile

--

DIRNAME=j2ee/OC4J_EM/config
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

FILENAME=jazn.xml
 BackupConfigFile

Chapter 8 ■ Sample em ClI SCrIptS

147

--

DIRNAME=j2ee/OC4J_EMPROV/application-deployments/em
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

--

DIRNAME=j2ee/OC4J_EMPROV/application-deployments/EMAgentPush
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

FILENAME=orion-application.xml
 BackupConfigFile

--

DIRNAME=j2ee/OC4J_EMPROV/config
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

FILENAME=jazn.xml
 BackupConfigFile

--

DIRNAME=j2ee/OCMRepeater/application-deployments/OCMRepeater
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

--

DIRNAME=j2ee/OCMRepeater/config
 PrepareBackupDir

FILENAME=jazn-data.xml
 BackupConfigFile

FILENAME=jazn.xml
 BackupConfigFile

Chapter 8 ■ Sample em ClI SCrIptS

148

--

DIRNAME=ldap/das
 PrepareBackupDir

FILENAME=oiddas.conf
 BackupConfigFile

--

DIRNAME=opmn/conf
 PrepareBackupDir

FILENAME=ons.conf
 BackupConfigFile

FILENAME=opmn.xml
 BackupConfigFile

--

DIRNAME=sysman/config
 PrepareBackupDir

FILENAME=httpd_em.conf
 BackupConfigFile

FILENAME=agentpush.conf
 BackupConfigFile

FILENAME=agent_download.conf
 BackupConfigFile

FILENAME=emoms.properties
 BackupConfigFile

--

DIRNAME=sysman/emd
 PrepareBackupDir

FILENAME=lastupld.xml
 BackupConfigFile

FILENAME=targets.xml
 BackupConfigFile

Chapter 8 ■ Sample em ClI SCrIptS

149

--

DIRNAME=sysman/j2ee/applications/Oc4jDcmServlet/META-INF
 PrepareBackupDir

FILENAME=application.xml
 BackupConfigFile

FILENAME=orion-application.xml
 BackupConfigFile

FILENAME=jazn-data.xml
 BackupConfigFile

FILENAME=principals.xml
 BackupConfigFile

--

DIRNAME=sysman/j2ee/applications/Oc4jDcmServlet/Oc4jDcmServlet/WEB-INF
 PrepareBackupDir

FILENAME=orion-web.xml
 BackupConfigFile

FILENAME=web.xml
 BackupConfigFile

--

DIRNAME=sysman/j2ee/application-deployments/Oc4jDcmServlet
 PrepareBackupDir

FILENAME=orion-application.xml
 BackupConfigFile

FILENAME=orion-web.xml
 BackupConfigFile

--

DIRNAME=sysman/webapps/emd/online_help
 PrepareBackupDir

FILENAME=ohwconfig.xml
 BackupConfigFile

Chapter 8 ■ Sample em ClI SCrIptS

150

--

DIRNAME=uix
 PrepareBackupDir

FILENAME=uix.conf
 BackupConfigFile

--

DIRNAME=wcs/config
 PrepareBackupDir

FILENAME=wcs_httpd.conf
 BackupConfigFile

--

DIRNAME=webcache
 PrepareBackupDir

FILENAME=internal.xml
 BackupConfigFile

DashedBreak

echo "\nBackup directories and contents after processing\n\n"
ls -lARp ${BACKUP_DIR} | grep -v "^total"

Transitory File Cleanup Script
Oracle Management Server generates logs for each of its components, from the WebLogic server down to the EM
agent on the host. Preinstalled rotations and file cleanup are very helpful where they exist, but some of the files aren’t
managed that way. It’s up to you to keep your server tidy.

This script works its way through the log directories on an OMS server. Each file is evaluated for how long it has
been idle. Older files are then removed:

#!/bin/ksh
#===
Script name : log_blaster_oms.ksh
Calling args : None
Purpose : Clean up logs files for OMS
References come from MOS Note 1445743.1
#===
Independent variables
#===
Set these variables to your local directory settings
The EM_INSTANCE_HOME is typically MIDDLEWARE_HOME/gc_inst
EM_INSTANCE_HOME=

WORKFILE=/tmp/logblaster_oms_workfile1.lst

Chapter 8 ■ Sample em ClI SCrIptS

151

#===
Functions
===

function CleanUpFiles {
--

[$WORKFILE] && rm -f ${WORKFILE}
}

function TrimThisFile {
--
if [-d ${thisDIR}]; then
 if [`find ${thisDIR} -name ${thisFILE} | wc -l` -gt 0]; then
 NEW_FILE=${thisDIR}/${thisFILE}
 OLD_FILE=${thisDIR}/${thisFILE}_old
 LAST_DATE=`tail -1 ${NEW_FILE} | awk '{ print $1,$2,$3 }'`
 echo "\nTrimming ${NEW_FILE}"
 echo "Entries older than ${LAST_DATE} will be removed\n"
 mv -f ${NEW_FILE} ${OLD_FILE}
 cat ${OLD_FILE} | grep "${LAST_DATE}" >${NEW_FILE}
 if [`cat ${NEW_FILE} | wc -l` -gt 0]; then
 rm -f ${OLD_FILE}
 else
 mv -f ${OLD_FILE} ${NEW_FILE}
 fi
 fi
 echo "\n\n"
else
 echo "\nDirectory ${thisDIR} not found\n\n"
fi
}

function SweepThese {
--
if [-d ${thisDIR}]; then
 find ${thisDIR} -name ${thisFILE} -mtime +${thisAGE} >${WORKFILE}
 if [`cat ${WORKFILE} | wc -l` -gt 0]; then
 echo "\nCleaning up ${thisDIR} directory"
 for thisTRASH in `cat ${WORKFILE}`; do
 echo"\tRemoving ${thisTRASH}"
 rm -f ${thisTRASH}
 done
 else
 echo "\nNo files over ${thisAGE} days old matching"
 echo "${thisDIR}/${thisFILE}"
 fi
 echo "\n\n"
else
 echo "\nDirectory ${thisDIR} not found\n\n"
fi
}

Chapter 8 ■ Sample em ClI SCrIptS

152

--
Run-time procedure
--

CleanUpFiles

--
The webtier directory name is pulled from the environment
Typically the value discovered OMS1, but it may be different
--

WEBTIERn=`ls ${EM_INSTANCE_HOME} | grep WebTier`

OHSn=`ls ${EM_INSTANCE_HOME}/${WEBTIERn}/diagnostics/logs/OHS | grep ohs`

--
Retention for this directory is set for seven days through thisAGE variable
--

thisDIR=${EM_INSTANCE_HOME}/${WEBTIERn}/diagnostics/logs/OHS/${OHSn}
 thisAGE=7

thisFILE="em_upload_http_access_log.*"
 SweepThese

thisFILE="em_upload_https_access_log.*"
 SweepThese

thisFILE="access_log.*"
 SweepThese

thisFILE="ohs*.log"
 SweepThese

thisFILE="console~OHS*.log*"
 SweepThese

thisFILE="mod_wl_ohs.log"
 TrimThisFile

--

DOMAIN_SERVERS_DIR=${EM_INSTANCE_HOME}/user_projects/domains/GCDomain/servers

thisDIR=${DOMAIN_SERVERS_DIR}/EMGC_ADMINSERVER/logs
 thisAGE=7

thisFILE="GCDomain.log*"
 SweepThese

Chapter 8 ■ Sample em ClI SCrIptS

153

thisFILE="EMGC_ADMINSERVER.out*"
 SweepThese

thisFILE="EMGC_ADMINSERVER.log*"
 SweepThese

thisFILE="EMGC_ADMINSERVER-diagnostic-*.log"
 SweepThese

thisFILE="access.log*"
 SweepThese

--

EMGC_OMSn=`ls ${DOMAIN_SERVERS_DIR} | grep OMS`

thisDIR=${DOMAIN_SERVERS_DIR}/${EMGC_OMSn}/logs
 thisAGE=7

thisFILE="EMGC_OMS*.out*"
 SweepThese

for eachDIR in `ls -1 /oraoms/exportconfig`; do
 thisDIR=/oraoms/exportconfig/${eachDIR}
 thisFILE="opf_ADMIN_*.bka"
 SweepThese
Done

CleanUpFiles
exit 0

Section 4: EM CLI Scripting and Interactive Scripts
Release 3 of Enterprise Manager includes both the standard command-line-only version of EM CLI as well as a
version with a robust scripting option (sometimes referred to as the advanced kit), which can be downloaded and
installed on any supported client operating system or used directly on the server. The connection method between
EM CLI and an Oracle Management Server (OMS) is the same regardless of the installation location of EM CLI.
Installation instructions for the Advanced Kit are covered in Chapter 2.

The scripting option of EM CLI refers to both scripting and interactive modes. In either of these modes EM
CLI expects the content of the scripts or the commands entered in interactive mode to be in Python syntax. To
connect from EM CLI to Enterprise Manager in interactive mode, type the command login(username='sysman',
password='foobar'). This command is a call to a Python function.

The samples in this section are the same code examples used in Chapter 6 and are all written in the Python
programming language. While the samples in the previous section used the operating system shell for all of their
scripting functionality (i.e., variables, for loops, if then else, etc.), the samples in this section will use EM CLI and
its Jython shell for everything. Because these samples don’t rely on any shell scripting functionality, they can be used
on any platform supported by EM CLI.

Chapter 8 ■ Sample em ClI SCrIptS

154

Simple Logon Script (start.py)
The code sample below can be copied directly into a text file. It is used to set some important session properties and
to establish a secure connection between the EM CLI client and the OMS to which it is connecting. Before using this
script, the variables myurl, myuser, and mypass will need to be updated for your environment:

from emcli import *

myurl = 'https://em12cr3.example.com:7802/em'
mytrustall = 'TRUE'
myoutput = 'JSON'
myuser = 'sysman'
mypass = 'foobar'

set_client_property('EMCLI_OMS_URL', myurl)
set_client_property('EMCLI_TRUSTALL', mytrustall)
set_client_property('EMCLI_OUTPUT_TYPE', myoutput)
print(login(username=myuser, password=mypass))

The start.py script can be used in both scripting and interactive modes. In scripting mode, the script could
be executed directly from EM CLI using the command emcli @start.py. The result would either succeed or fail in
establishing a connection between EM CLI and an OMS. Using this script alone would not be very useful unless you
just wanted to see the confirmation that the connection can be made.

start.py is commonly called from other scripts, or when in interactive mode, from the EM CLI Jython command-
line interface (not to be confused with command-line mode). Calling start.py from another script is done by
importing the script as a module.

For example, a script called sync.py is called in scripting mode with the command emcli @sync.py. Before the
commands can be executed, a connection must be established between EM CLI and an OMS. If the start.py script is in
a directory that is included in JYTHONPATH, the logon script can be called as the first command with import start.

Note ■ JYTHONPATH is a shell environment variable that will be used by em ClI to establish all of the directories to be
searched when importing modules. to add a directory, supplement the variable according to the shell standards, similar
to how a directory would be added to the PATH environment variable.

An alternative would be to execute the start.py in scripting mode using the command emcli @start.py and then
call the sync.py (import sync) script as the last line in start.py. This method would assume that sync.py is located
within the searchable path of the JYTHONPATH environment variable.

When using interactive mode, the start.py script must be in the searchable path of JYTHONPATH and be called
with import start. The logon is now established for the life of the current interactive session or until the logon is
implicitly (expired timeout) or explicitly (using the logout() function) dissolved.

Many Enterprise environments discourage or do not allow scripts to contain credential passwords. The start.py
script can be slightly modified to take advantage of Python’s capability to read external files, as shown in the
next example.

https://em12cr3.example.com:7802/em

Chapter 8 ■ Sample em ClI SCrIptS

155

Secure Logon Script (secureStart.py)
start.py has a major flaw when it comes to security, as it contains a credential password. secureStart.py, however,
has the same capability as start.py to establish a connection between EM CLI and an OMS, without revealing the
credential password in the script. The script instead opens a file from the filesystem that contains the password and
reads the password into a variable. It then uses the contents of this variable as the credential password in the login()
function.

secureStart.py is used in the same way as start.py. However, there are additional requirements. The first
requirement is to create a file on a filesystem accessible from EM CLI that contains only the credential password in
plain text. Secure this file with permissions appropriate for your environment. In addition to updating the myurl and
the myuser script variables to match your environment, the mypassloc script variable needs to be changed to the full
path location of the file containing the credential password. Take a look at the following:

from emcli import *

myurl = 'https://em12cr3.example.com:7802/em'
mytrustall = 'TRUE'
myoutput = 'JSON'
myuser = 'sysman'
mypassloc = '/home/oracle/.secret'

set_client_property('EMCLI_OMS_URL', myurl)
set_client_property('EMCLI_TRUSTALL', mytrustall)
set_client_property('EMCLI_OUTPUT_TYPE', myoutput)

myfile = open(mypassloc,'r')
mypass = myfile.read()

print(login(username=myuser, password=mypass))

The logon scripts only establish a connection between EM CLI and an OMS. They do not have any effect on the
Enterprise Manager targets. The remaining samples in this section demonstrate how to manipulate targets using
interactive or scripting modes.

Update Target Properties Commands (updatePropsFunc.py)
The updatePropsFunc.py script contains the commands needed to update the properties of Enterprise Manager
targets. These commands can be copied individually into an EM CLI interactive session after establishing a logon. The
full sample can also be put into a script and executed directly (a logon will need to be established first) with EM CLI in
scripting mode using the command emcli @updatePropsFunc.py. This sample includes comments (lines beginning
with the hash character) about the script commands that should be included when copying to a script. In EM CLI
(as well as in Python and Jython), any line beginning with a hash character is ignored.

Note ■ View the logon samples at the beginning of this section for information on how to establish a logon in scripting
or interactive mode.

https://em12cr3.example.com:7802/em

Chapter 8 ■ Sample em ClI SCrIptS

156

from emcli import *
import re

Regular expression applied to target name to filter target list
'.*' includes all targets
'^orcl' includes all targets that begin with 'orcl'
'^em12cr3\.example\.com$' includes target
with the exact name 'em12cr3.example.com'
myfiltermatch = '.*'

Dictionary object containing the property names and values
to be applied to the target list
myprops = {'LifeCycle Status':'Development', 'Location':'COLO'}

When debug is enabled, commands will be printed but not executed
debug = True

Delimiter should be something that will not appear
in any target name
mydelim = '@'
mysubsep = 'property_records=' + mydelim

Compile the target name filter
myreg = re.compile(myfiltermatch)

Retrieve the full target list from the OMS
myobj = get_targets().out()['data']

Loop through the full target list
for targ in myobj:
 # If the target name filter applies...
 if myreg.search(targ['Target Name']):
 myproprecs = targ['Target Name'] + mydelim + \
 targ['Target Type'] + mydelim

 # Loop through the target properties dictionary
 # for each target
 for propkey, propvalue in myprops.items():
 myproprecprops = propkey + mydelim + propvalue

 # If debug is True, print the command to screen
 # without executing
 if debug:
 mycommand = 'set_target_property_value(' + \
 'subseparator="' + mysubsep + \
 '", property_records="' + \
 myproprecs + \
 myproprecprops + '")'
 print(mycommand)

Chapter 8 ■ Sample em ClI SCrIptS

157

 # If debug is not True, print a message
 # and execute command
 else:
 print('Target: ' + targ['Target Name'] + \
 ' (' + targ['Target Type'] + \
 ')\n\tProperty: ' + propkey + \
 '\n\tValue: ' + propvalue)
 set_target_property_value(
 subseparator=mysubsep,
 property_records=myproprecs + myproprecprops)

Update Target Properties Class (updateProps.py)
The updateProps.py script contains a couple of import statements and a single class definition. This script does not
contain any commands that are executed directly. Therefore, it would not be useful to execute this script directly
(i.e., emcli @updateProps.py). The proper use would be to import the script as a module along with a logon script
in interactive mode, then execute commands using the class and its functions. In scripting mode, an execution script
would be created containing the commands that use the class and its functions. Import statements for updateProps.py
and an import statement for a logon script would appear prior to any command executions.

To demonstrate this, create a script called changeTargProps.py. This script will be used to change target
properties that use the updateProps() class. The environment in this example requires that the credential password
not be contained in the executing script; therefore, the secureStart.py logon script will be used to establish a logon.
The first two lines of changeTargProps.py will be import statements:

import secureStart
import updateProps

At this point in the execution of the script, there should have been a successful logon between EM CLI and the
OMS, and the updateProps() class should have been imported. The rest of the commands in the script use the class
functions to update the properties of a target:

Create an instance of the class.
myinst = updateProps.updateProps()

Set a single property to be applied.
myinst.props({'LifeCycle Status':'Development'})

Include only host targets with the exact name em12cr3.example.com.
myinst.filt(namefilter='^em12cr3\.example\.com$', typefilter='^host$', show=True)

Update the currently defined target list to the currently defined properties.
myinst.setprops(show=True)

This complete script could now be called in scripting mode using the command emcli @changeTargProps.py.
The script would update the Lifecycle Status property of the em12cr3.example.com host target in Enterprise Manager
to Development. Copying the commands from the sample into an EM CLI interactive session would have the same
effect.

Chapter 8 ■ Sample em ClI SCrIptS

158

The functionality of updateProps() can be as simple or as complex as the situation requires. The examples below
show additional methods of using updateProps(). The functionality of each example is explained using comments.
Including the comments with the commands allows them to be copied with the commands into a script:

Set multiple properties to be applied.
myinst.props({'LifeCycle Status':'Development', 'Location':'COLO', 'Comment':'Test EM'})

Show the currently defined properties to be applied.
print(myinst.propdict)

Include only host or agent targets that start with em12cr3.example.com.
myinst.filt(namefilter='^em12cr3\.example\.com', typefilter='^host|oracle_emd$')

Include only agent targets.
myinst.filt(typefilter='^oracle_emd$')

Include only targets managed by the em12cr3.example.com:3872 agent.
myinst.filt(agentfilter='^em12cr3\.example\.com:3872$')

Include only host targets that start with EM, end with Service
and have a single word between EM and Service.
myinst.filt(namefilter='^EM\s+\S+\s+Service$')

Create an instance of the class, define the properties
to be applied and specify the target list filters in a single command.
myinst = updateProps.updateProps(namefilter='^orcl', typefilter='oracle_dbsys',
agentfilter='em12cr3\.example\.com:3872', propdict={'LifeCycle Status':'Development'})

Clear all filters which resets the instance to include all targets.
myinst.filt()

Show the currently defined target list and each target's currently
defined properties for the myinst instance.
myinst.show()

Update the currently defined target list to the currently defined
properties without reprinting the target and target properties list.
myinst.setprops()

Apply a property update using the class without creating an instance.
updateProps.updateProps(
 namefilter='^orcl',
 typefilter='oracle_dbsys',
 agentfilter='em12cr3\.example\.com:3872',
 propdict={
 'LifeCycle Status':'Production',
 'Location':'DC1'}
).setprops(True)

Chapter 8 ■ Sample em ClI SCrIptS

159

The sample below is the updateProps.py script. The updateProps() class is heavily commented to explain the
functionality of its individual components and its purpose as a whole. Additional detail about this class can be found
in Chapter 6:

import emcli
import re
import operator

class updateProps():
 """
 The updateProps() class is used in conjuction with
 EM CLI and allows the user to apply a defined set
 of target properties to a target list filtered at
 multiple levels with regular expressions. These
 target list filter levels include the target name,
 the target type, and the parent agent name. The
 properties can be applied to the targets using the
 class directly or using an instance of the class.

 The filtered list can be specified:
 - as class parameters and have the defined
 properties applied directly to them
 - as class parameters when creating an instance
 of the class
 - with the filt() function as part of an instance

 The defined set of target properties can specified:
 - as the class dictionary parameter 'propdict'
 and have the defined properties applied
 directly to the target list
 - as the class dictionary parameter 'propdict'
 when creating an instance of the class
 - with the props() function as part of an instance
 """
 def __init__(self, agentfilter='.*', typefilter='.*',
 namefilter='.*', propdict={}):
 self.targs = []
 self.reloadtargs = True
 self.props(propdict)
 self.__loadtargobjects()
 self.filt(agentfilter=agentfilter, typefilter=typefilter,
 namefilter=namefilter)
 def __loadtargobjects(self):
 """
 __loadtargobjects() queries the OMS for the full
 target list. The target list is then cached in the
 instance variable 'fulltargs' and each target's
 corresponding properties are assigned to the
 'targprops' instance variable. These variables
 are refreshed only when target properties have been
 applied.

Chapter 8 ■ Sample em ClI SCrIptS

160

 This function is called by other functions and
 should never be called directly.
 """
 if self.reloadtargs == True:
 self.reloadtargs = False
 self.fulltargs = \
 emcli.list(resource='Targets').out()['data']
 self.targprops = \
 emcli.list(resource='TargetProperties'
).out()['data']
 def props(self, propdict):
 """
 props() can be called from an instance directly or
 will be called by __init__() when defining the
 instance or using the class directly. This function
 defines a dictionary object of the property names
 and values that will be applied to the defined
 target list.
 """
 assert isinstance(propdict, dict), \
 'propdict parameter must be ' + \
 'a dictionary of ' + \
 '{"property_name":"property_value"}'
 self.propdict = propdict
 def filt(self, agentfilter='.*', typefilter='.*',
 namefilter='.*',
 sort=('TARGET_TYPE','TARGET_NAME'), show=False):
 """
 filt() can be called from an instance directly or
 will be called by __init__() when defining the
 instance or using the class directly. This function
 limits the target list by only including those targets
 whose properties match the defined filters.

 This function accepts the following parameters:
 agentfilter - regular expression string applied
 to the parent agent of the target
 typefilter - regular expression string applied
 to the target type value
 namefilter - regular expression string applied
 to the target name value
 """
 self.targs = []
 __agentcompfilt = re.compile(agentfilter)
 __typecompfilt = re.compile(typefilter)
 __namecompfilt = re.compile(namefilter)
 self.__loadtargobjects()
 for __inttarg in self.fulltargs:
 if __typecompfilt.search(__inttarg['TARGET_TYPE']) \
 and __namecompfilt.search(
 __inttarg['TARGET_NAME']) \

Chapter 8 ■ Sample em ClI SCrIptS

161

 and (__inttarg['EMD_URL'] == None or \
 __agentcompfilt.search(__inttarg['EMD_URL'])):
 self.targs.append(__inttarg)
 __myoperator = operator
 for __myop in sort:
 __myoperator = operator.itemgetter(__myop)
 self.targssort = sorted(self.targs, key=__myoperator)
 if show == True:
 self.show()
 def show(self):
 """
 show() can be called from an instance directly or
 as a parameter from some of the other functions.
 Prints a neatly formatted display of the target name
 and type along with all of the target's currently
 defined property names and values.
 """
 print('%-5s%-40s%s' % (
 ' ', 'TARGET_TYPE'.ljust(40, '.'),
 'TARGET_NAME'))
 print('%-15s%-30s%s\n%s\n' % (
 ' ', 'PROPERTY_NAME'.ljust(30, '.'),
 'PROPERTY_VALUE', '=' * 80))
 for __inttarg in self.targssort:
 print('%-5s%-40s%s' % (
 ' ', __inttarg['TARGET_TYPE'].ljust(40, '.'),
 __inttarg['TARGET_NAME']))
 self.__showprops(__inttarg['TARGET_GUID'])
 print('')
 def __showprops(self, guid):
 """
 __showprops() prints the target properties for the
 target with the unique guid matching the 'guid'
 variable passed to the function. This function is
 called by the show() function for each target to
 print out the corresponding properties of the target.

 This function is called by other functions and
 should never be called directly.
 """
 self.__loadtargobjects()
 for __inttargprops in self.targprops:
 __intpropname = \
 __inttargprops['PROPERTY_NAME'].split('_')
 if __inttargprops['TARGET_GUID'] == guid and \
 __intpropname[0:2] == ['orcl', 'gtp']:
 print('%-15s%-30s%s' %
 (' ', ' '.join(__intpropname[2:]).ljust(
 30, '.'),
 __inttargprops['PROPERTY_VALUE']))

Chapter 8 ■ Sample em ClI SCrIptS

162

 def setprops(self, show=False):
 """
 setprops() is called directly from the class or
 from an instance and calls the EM CLI function that
 applies the defined set of properties to each target
 in the filtered list of targets. The 'show' boolean
 parameter can be set to True to call the show()
 function after the properties have been applied.
 """
 assert len(self.propdict) > 0, \
 'The propdict parameter must contain ' + \
 'at least one property. Use the ' + \
 'props() function to modify.'
 self.reloadtargs = True
 __delim = '@#&@#&&'
 __subseparator = 'property_records=' + __delim
 for __inttarg in self.targs:
 for __propkey, __propvalue \
 in self.propdict.items():
 __property_records = __inttarg['TARGET_NAME'] + \
 __delim + __inttarg['TARGET_TYPE'] + \
 __delim + __propkey + __delim + __propvalue
 print('Target: ' + __inttarg['TARGET_NAME'] +
 ' (' + __inttarg['TARGET_TYPE'] +
 ')\n\tProperty: '
 + __propkey + '\n\tValue: ' +
 __propvalue + '\n')
 emcli.set_target_property_value(
 subseparator=__subseparator,
 property_records=__property_records)
 if show == True:
 self.show()

A���������
Argfile

advantages, 70
batch processing, 69
create and edit, 70
Lifecycle Status property, 76

B���������
BI Publisher (BIP), 116

C, D���������
Cleanup script, 150
Command line

administrator accounts, 54
agent-management tasks, 48
Enterprise Manager (EM) agent

delete_targets verb, 50
removal tasks, 51
targets transfered, 52

get_targetsverb, 47
help command, 46
management servers, 54
synccommand, 45

E���������
EM12c Release 4 verbs, 7

BI Publisher, 23
cloud service verbs, 24
Fusion Middleware verbs, 24
golden agent verbs, 23
job verbs, 25
miscellaneous verbs, 24
target data verbs, 25

EM CLI
advanced kit, 18
blackouts, 37
command line (see Command line)
communication, 32
configuration setup, 30
error codes, 29
get_targets

command-line mode, 35
interactive mode, 36
scripting mode, 36
using wildcards, 35

help() function, 28
installation, 19
job manipulation, 41
login verb, 33

interactive mode, 34
Jython module, 34
ps command, 34
scripting mode, 35
SSL authentication method, 34

modes
command-line mode, 28
interactive mode, 28
scripting mode, 28

scripts, 125, 153
changeTargProps.py script, 157
Lifecycle Status property, 157
secureStart.py script, 155
start.py script, 154
updatePropsFunc.py script, 155
updateProps.py script, 157

syntax, 30
target creation, 39
verbs, 27

EMCTL communication, 32
EMCTL vs. EM CLI, 33

Index

163

Enterprise Manager Command-Line Interface (EM CLI)
accessing, 6
centralization, 5
client software, 4
control utility, 4
framework, 1
safety net, 6
start and stop, 5
verbs, 1

Enterprise Manager control utility (EMCTL), 68

F, G, H���������
Function library

code implementation, 126
command line input variables, 125
debugging code, 131
echo statements, 125
TTY session, 126

Fusion Middleware Provisioning
Procedure (FMWPROV), 13

I���������
Information Publisher (IP) Reports, 116

J, K���������
JSON, 80
Jython, 79

L, M, N���������
Listener process, 85
Logon Script, 87

O���������
OEM Jobs, EM CLI

create_job verb, 112
creating and upgrading jobs, 113
removing agents, 115
upgrading agents, 113

OEM Software Library. See Software library
Oracle Extensibility Exchange

advantages, 118
At a Glance tab, 122
Classic view, 122
comparisons of EMC plug-ins, 122–123
Contribute tab, 122
Fusion ION Accelerator plug-in, 121
global access, 118
Header page, 119
home page, 118

link, 117
offloading and export features, 118
Search bar view, 119–120
secondary search page, 121
tagged search, 119–120

P, Q���������
Patching process, 20

remote client installation, 21
templates, 21
with EM CLI clients, 21

Python, 79
HELLO WORLD, 81
help() function, 81
logon script, 87
objects

dictionary, 87
EM CLI lists, 85
len() function, 84
listener process, 85
lists, 84
numbers and strings, 83

overview, 80
target properties, 89
updateProps() class, 94

EM CLI targets, 96
filt() function, 100
init() function, 99
loadtargobjects() function, 100
props() function, 100
setprops() function, 102
show() function, 101
showprops() function, 102

R���������
Remote target installation

associated directory, 18
downloading and deploying, 17
efficiency, 16
emclikit.jar file, 17
Java path, 18
requirements, 17
security, 16

Report Definition Library, 112

S, T, U���������
Schedule blackouts

administrator references, 72
argfile creation, 70–71
batch processing, 69
Enterprise Manager control utility (EMCTL), 68

■ index

164

using function library
bashrc and .bash_profile, 67
CreateBlackout, 66
EndBlackout, 66
restore_training.sh script, 66

getopts command, 74
Lifecycle Status property, 76
OEM administrator, 68
robust solution, 64
role management, 69
sandbox OEM servers, 71
Shell Scripts, 64–65
SYSMAN schema, 71

Security framework, 7
architecture, 22
HTTPS trusted certificates, 22
secure mode, 22

Server-management scripts, 142
Shell scripts

command-line utilities, 59
blackouts, EM CLI, 62
functions, 60
get_targets verb, 61
name argument, 63
schedule argument, 63
schedule blackouts (see Schedule blackouts)
targets argument, 63

getopts command, 74
log files creation, 57

echo statements, 58
error handling, 58

passwords, 59
Software library

adding/editing/deleting scripts, 112
adding scripts, 110
agent shared file system, 107
central library, 105
creating entities, 110
creating generic components, 111
descriptive data and path information of scripts, 111
EM12c console

access of libraries, 108
command-line scripts folder, 110
information entries of new folder, 109
new folder creation, 108–109

EM12c software library interface, 106
Information Publisher (IP) Reports, 116
multiple scripts, 110
new file location, 107

OMS shared file system, 106–107
Oracle Extensibility Exchange

advantages, 118
At a Glance tab, 122
Classic view, 122
comparisons of EMC plug-ins, 122–123
Contribute tab, 122
Fusion ION Accelerator plug-in, 121
global access, 118
Header page, 119
home page, 118
link, 117
offloading and export features, 118
Search bar view, 119–120
secondary search page, 121
tagged search, 119–120

referenced file location, 107
Report Definition Library, 112
Setup menu dropdown, 105–106
Store Definition Library, 117
unique name for scripts, 112
uploading scripts, 110

Store Definition Library, 117
SYSMAN schema, 71

V���������
Veritas Cluster Servers (VCS)

code implementation, 134
database, 134
listener targets, 134
OEM agents, 133
Oracle Enterprise Manager (OEM), 134
program logic, 133
QUAL cluster group, 134
TEST node, 134

W, X, Y, Z���������
WebLogic server (WLS), 7
WLS installation

domain provisioning profile, 7
environment variables, 16
FMWPROV procedure, 13
Java Required Files (JRF), 8
Java version, 15
Jython, 15
requirements, 7
software library, 8

■ index

165

Oracle Enterprise
Manager 12c

Command-Line Interface

Kellyn Pot’Vin

Seth Miller

Ray Smith

Oracle Enterprise Manager 12c Command-Line Interface

Copyright © 2014 by Kellyn Pot’Vin, Seth Miller, Ray Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0239-5

ISBN-13 (electronic): 978-1-4842-0238-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Developmental Editor: James Markham
Technical Reviewer: Hans Forbrich and Sarah Brydon
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

I dedicate this book to my children, Sam, Cait, and Josh, who are my reason for
setting an example every day of my life.

—Kellyn Pot’Vin-Gorman

I dedicate this book to my fellow authors: Kellyn for providing me much needed guidance on my first
journey as a book author, and Ray for his encouragement and just the right amount of persistence.

—Seth Miller

I dedicate this book to all the volunteers and staff at IOUG. Thanks for helping me
become a better technologist and a much better person.

—Ray Smith

vii

Contents

About the Authors ��xiii

About the Technical Reviewers �� xv

Acknowledgments �� xvii

Chapter 1: Architecture ■ ���1

Enterprise Manager Framework ��1

EM CLI Verbs ���1

EM CLI Client Software ��4

EM CLI and EMCTL ��4

Agent Start and Stop ��� 5

Centralization ��� 5

Access ��� 6

Safety Net ��6

Chapter 2: Installation and Security Framework and EM12c Release 4 ■ ���������������������������7

EM CLI and WebLogic Installation ���7

Requirements �� 7

Creating the WebLogic Domain Provisioning Profile �� 7

Filtering Out Fusion Middleware �� 13

Jython �� 15

Supported Java Versions ��� 15

Path and Environment Variables �� 16

Client or Remote Target Installation ��16

■ Contents

viii

EM CLI Advanced Kit ��18

EMCLI Installation via the OMS �� 19

Post-Installation ��20

Patching and Upgrades ���20

Patching with the EM CLI Clients ��� 21

Patching Remote Client Installations ��� 21

EM Security Framework ��22

Security in the EM CLI ��� 22

Secure Mode for EM CLI Setup �� 22

HTTPS Trusted Certificate �� 22

Verbs of Great Value in Release 4��23

Gold Agent Update Verbs ��� 23

BI Publisher Reports Verbs �� 23

Cloud Service Verbs ��� 24

Miscellaneous Verbs �� 24

Fusion Middleware Provisioning Verbs �� 24

Job Verbs ��� 25

Target Data Verbs �� 25

Summary ���25

Chapter 3: Terminology and Basics ■ ���27

Terminology: Verbs ��27

Modes ��28

Command-line ��� 28

Interactive �� 28

Scripting �� 28

Help! ��28

Understanding Error Codes ���29

Syntax ���30

Setup ���30

■ Contents

ix

Communication ���32

EM CLI �� 32

EMCTL �� 32

EMCTL versus EM CLI ��33

Task: Establish a Login �� 33

Task: Get a List of Targets �� 35

Task: Using Blackouts �� 37

Task: Create Targets �� 39

Task: Manipulating Jobs �� 41

Summary ���43

Chapter 4: Working at the Command Line ■ ���45

Start an EM CLI Session ��45

CLI References ��45

The get_targets Verb ���47

Output Formats �� 47

Agent Administration ���48

Deleting EM Targets with EM CLI ���50

Find Exact Target Names ��� 50

Delete the Target ��� 50

How to Remove an Enterprise Manager Agent with One Command ���51

Transferring Targets to Another EM Agent ���52

How It Works �� 52

OMS-Mediated Targets �� 53

Managing OEM Administrators ��54

Role Management�� 54

Tracking Management Server Login��54

Summary ���55

■ Contents

x

Chapter 5: Automation Through Shell Scripts ■ ���57

Best Practices for Shell Scripting ��57

Logging �� 57

Passwords and Shell Scripts ��� 59

Calling EM CLI from a Shell Script ���59

Shell Script Functions �� 60

GetTargetName Function ��� 61

Name Argument ��� 63

Add Targets Argument ��� 63

Schedule Argument ��� 63

A Robust Solution for Scheduled Blackouts �� 64

Summary ���77

Chapter 6: Advanced Scripting ■ ��79

History of Python ���79

Jython��79

JSON��80

Getting Started ��80

Hello World! ���81

Finding Help ��81

Python Objects ��83

Numbers and Strings ��� 83

Lists ��� 84

Simple Lists ��� 84

Lists in EM CLI ��� 85

Strings and Lists �� 85

Dictionaries �� 87

Logon Script ��87

Python Scripting with EM CLI to Set Target Properties ��89

■ Contents

xi

Python Class with EM CLI to Set Target Properties ���94

Using the updateProps() Class �� 96

Understanding the Code �� 99

Summary ���103

Chapter 7: Using the Software Library and Oracle Extensibility Exchange ■ �������������������105

The OEM Software Library���105

Software Library ��105

Setting Up Software Library Storage ���105

Checking In Entities ���108

Adding Scripts to the Software Library ���110

Building a Report Definition Library ��112

OEM Jobs Using CLI Calls ��112

Create a Job �� 113

Step 1: Upgrade Agents ��� 113

Step 2: Remove Old Agents ��� 115

Export/Import Capabilities for Information Publisher Reports ���116

Store Definition Library in Software Library ��117

Oracle Extensibility Exchange ���117

Extensibility Exchange ��121

Classic View ��122

Development Resources ��122

Contribute ��122

At a Glance ��122

Summary ���123

■ Contents

xii

Chapter 8: Sample EM CLI Scripts ■ ���125

Section 1: Function Library and Shell Scripts ���125

Command-Line Inputs �� 125

Evidence of Life ��� 126

Sample Function Library �� 126

Function-Related Shell Scripts �� 131

Section 2: EM CLI and Veritas Cluster Server ��133

Program Logic ��� 133

Veritas Cluster Server �� 133

Oracle Enterprise Manager �� 134

Implementation ��� 134

Section 3: Essential Server-Management Scripts ���142

Configuration Backup Script �� 142

Transitory File Cleanup Script �� 150

Section 4: EM CLI Scripting and Interactive Scripts ��153

Simple Logon Script (start�py) ��� 154

Secure Logon Script (secureStart�py) �� 155

Update Target Properties Commands (updatePropsFunc�py) �� 155

Update Target Properties Class (updateProps�py)�� 157

Index ���163

xiii

About the Authors

Kellyn Pot’Vin- Gorman is an Oak Table Network Member. She was an Oracle
ACE Director until joining Oracle as the Consulting Member for the Strategic
Customer Program, a specialized group of Enterprise Manager specialists.
She specializes in environment optimization tuning, automation, and creating
systems that are robust and at the Enterprise level. Kellyn works almost
exclusively on mult-TB-size databases, including Exadata and solid-state disk
solutions and is known for her extensive work with both the Enterprise Manager
12c and its command-line interface. Her blog, http://dbakevlar.com, along
with her social media activity under her handle, DBAKevlar, is well respected for
its insight and content. She is the co-author of a number of technical books, hosts
webinars for ODTUG, OTN, and All Things Oracle, and has presented at Oracle Open
World, HotSos, Collaborate, and KSCOPE, along with numerous other U.S. and
European conferences. Kellyn is a strong advocate for Women in Technology (WIT),
citing both education on topics such as stereotypes and the presentation of early
opportunities as being part of the path to overcoming challenges.

Seth Miller is an Oracle ACE and has been working with Oracle technologies
since 2005. He has worked as a DBA in a number of industries, including health
care, medical device manufacturing, and environmental science, and he now
works as a consultant and an Oracle University Certified Instructor. Seth is a
strong advocate for Oracle products and the Oracle community, serving as
the IOUG Director of Volunteer Engagement, serving as the Vice President of
the Twin Cities Oracle Users Group, engaging in social media conversations
concerning Oracle technology, and participating in discussions on the Oracle-L
mailing list. Seth is a regular speaker at the IOUG Collaborate and Oracle
OpenWorld conferences, as well as a host of webinars for OTN. His blog,
http://sethmiller.org, features posts related to Oracle and other
technology. Enterprise Manager has found a special place in Seth’s heart as a
means of lightening the load of the IT administrator, while at the same time
empowering them.

http://dbakevlar.com
http://sethmiller.org

■ About the Authors

xiv

Ray Smith is an Oracle ACE and a dedicated IOUG volunteer. He currently serves as
the Executive Editor of the SELECT Journal and Best Practices booklet, along with
the best job at IOUG—New Speaker Mentor for the COLLABORATE Conference.
He is a regular speaker at COLLABORATE, Oracle Open World, and at regional user
groups. Ray’s blog, http://oramanageability.wordpress.com, is dedicated to
explaining the ins and outs of Oracle Enterprise Manager. He recently established
the Northwest Oracle User Group ‘Women in Technology’ scholarship at Portland
State University. He is a proud member of the Oracle Enterprise Manager Customer
Advisory Board and is an unapologetic advocate for OEM.

http://oramanageability.wordpress.com

xv

About the Technical Reviewers

Oracle ACE Director and Electrical Engineer Hans Forbrich has been using Oracle
technologies since 1984. During the 1990s, Hans gained considerable experience
working with, and for, Oracle in the telecommunications industry across
North America. He left Oracle at the end of 2002 to start Forbrich Consulting Ltd.,
a private company specializing in leveraging Oracle licenses through intelligent
architecture, administration, and training. In his practice, Hans has used the Oracle
Enterprise Manager family of products, which he has done since their inception in
the early Oracle 8 time frame.

Hans has been happily married for over 30 years and has three adult children.
In his “spare” time, Hans enjoys the arts with his wife, Susanne, and is a member of
the Edmonton Opera Chorus.

Sarah Brydon is an accomplished technologist with more than two decades of
experience with Oracle and UNIX based applications. An Oracle DBA since 1996,
Sarah has worked with all versions of Oracle from 7.1 and is an Oracle Certified
Master. She has extensive experience in system design and support for
24x7 environments, in Oracle RAC deployments and in security and audit
considerations for Oracle databases.

Previously Sarah was a Senior Oracle Specialist for Blackrock, the largest
global financial services company with more than 3 trillion dollars in assets under
management. Sarah is currently a Senior Member of Technical Staff (Database
Engineering) at Paypal.

xvii

Acknowledgments

I thank my husband, Tim Gorman, the best partner anyone could ask for and the Oracle community for their
continued support and quest for knowledge.

My wife, Katie, brings order to my life, and my two children, Isaac and Adalyn, share their immeasurable joy with
me every day. I’d like to thank the Oracle community for their amazing capacity to always make me want to be a better
technologist.

My wife, Valerie, makes my life better every day. Her encouragement for this project was essential to its
completion. I’d also like to thank the tremendous Oracle employees responsible for making OEM the fine tool that it is.
Werner De Gruyter, Ana McCollum, Adeesh Fulay, and Maureen Byrne have all shown a genuine interest in improving
OEM through user feedback and understanding. Their insights brought all of this into focus.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Architecture
	Enterprise Manager Framework
	EM CLI Verbs
	EM CLI Client Software
	EM CLI and EMCTL
	Agent Start and Stop
	Centralization
	Access

	Safety Net

	Chapter 2: Installation and Security Framework and EM12c Release 4
	EM CLI and WebLogic Installation
	Requirements
	Creating the WebLogic Domain Provisioning Profile
	Filtering Out Fusion Middleware
	Jython
	Supported Java Versions
	Path and Environment Variables

	Client or Remote Target Installation
	EM CLI Advanced Kit
	EMCLI Installation via the OMS

	Post-Installation
	Patching and Upgrades
	Patching with the EM CLI Clients
	Creating a Properties File from a Template

	Patching Remote Client Installations

	EM Security Framework
	Security in the EM CLI
	Secure Mode for EM CLI Setup
	HTTPS Trusted Certificate

	Verbs of Great Value in Release 4
	Gold Agent Update Verbs
	BI Publisher Reports Verbs
	Cloud Service Verbs
	Miscellaneous Verbs
	Fusion Middleware Provisioning Verbs
	Job Verbs
	Target Data Verbs

	Summary

	Chapter 3: Terminology and Basics
	Terminology: Verbs
	Modes
	Command-line
	Interactive
	Scripting

	Help!
	Understanding Error Codes
	Syntax
	Setup
	Communication
	EM CLI
	EMCTL

	EMCTL versus EM CLI
	Task: Establish a Login
	Task: Get a List of Targets
	Task: Using Blackouts
	Task: Create Targets
	Task: Manipulating Jobs

	Summary

	Chapter 4: Working at the Command Line
	Start an EM CLI Session
	CLI References
	The get_targets Verb
	Output Formats

	Agent Administration
	Deleting EM Targets with EM CLI
	Find Exact Target Names
	Delete the Target

	How to Remove an Enterprise Manager Agent with One Command
	Transferring Targets to Another EM Agent
	How It Works
	OMS-Mediated Targets

	Managing OEM Administrators
	Role Management

	Tracking Management Server Login
	Summary

	Chapter 5: Automation Through Shell Scripts
	Best Practices for Shell Scripting
	Logging
	Redirection
	Error Handling

	Passwords and Shell Scripts

	Calling EM CLI from a Shell Script
	Shell Script Functions
	GetTargetName Function
	Managing Blackouts with EM CLI

	Name Argument
	Add Targets Argument
	Schedule Argument
	A Robust Solution for Scheduled Blackouts
	Create and Stop Blackouts Using Shell Scripts
	Creating and Using a Function Library
	EMCTL or EMCLI
	Managing OEM Administrators with EM CLI
	Role Management
	Batch Processing with Argfile
	Populating an Argfile from a Text File
	Cloning OEM Roles and Users Between OMS Instances
	Changing EM Administrator References
	Shell Getopts Command
	Updating Target Properties Using Argfile

	Summary

	Chapter 6: Advanced Scripting
	History of Python
	Jython
	JSON
	Getting Started
	Hello World!
	Finding Help
	Python Objects
	Numbers and Strings
	Lists
	Simple Lists
	Lists in EM CLI
	Strings and Lists
	Dictionaries

	Logon Script
	Python Scripting with EM CLI to Set Target Properties
	Python Class with EM CLI to Set Target Properties
	Using the updateProps( ) Class
	Understanding the Code

	Summary

	Chapter 7: Using the Software Library and Oracle Extensibility Exchange
	The OEM Software Library
	Software Library
	Setting Up Software Library Storage
	Checking In Entities
	Adding Scripts to the Software Library
	Building a Report Definition Library
	OEM Jobs Using CLI Calls
	Create a Job
	Step 1: Upgrade Agents
	Step 2: Remove Old Agents

	Export/Import Capabilities for Information Publisher Reports
	Store Definition Library in Software Library
	Oracle Extensibility Exchange
	Extensibility Exchange
	Classic View
	Development Resources
	Contribute
	At a Glance
	Summary

	Chapter 8: Sample EM CLI Scripts
	Section 1: Function Library and Shell Scripts
	Command-Line Inputs
	Evidence of Life
	Sample Function Library
	Function-Related Shell Scripts

	Section 2: EM CLI and Veritas Cluster Server
	Program Logic
	Veritas Cluster Server
	Oracle Enterprise Manager
	Implementation

	Section 3: Essential Server-Management Scripts
	Configuration Backup Script
	Transitory File Cleanup Script

	Section 4: EM CLI Scripting and Interactive Scripts
	Simple Logon Script (start.py)
	Secure Logon Script (secureStart.py)
	Update Target Properties Commands (updatePropsFunc.py)
	Update Target Properties Class (updateProps.py)

	Index

